Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 22(5): 1224-1232, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32322852

RESUMO

While development of the Utica/Point Pleasant Shale (UPP) is extensive in Ohio (U.S.) and increasing in Pennsylvania and West Virginia, few studies report the chemistry of produced waters from UPP wells. These data have important implications for developing best management practices for handling and waste disposal, or identifying the fluid in the event of accidental spill events. Here, we evaluated the elemental and isotope chemistry of UPP produced waters from 26 wells throughout Ohio, Pennsylvania, and West Virginia to determine any unique fluid chemistries that could be used for forensic studies. Compared to the Marcellus, UPP produced waters contain higher activities of total radium (226Ra + 228Ra) and higher 228Ra/226Ra ratios. As with the Marcellus Shale, elemental ratios (Sr/Ca) and isotope ratios (87Sr/86Sr) can distinguish UPP produced waters from many conventional oil and gas formations. Sr/Ca and 87Sr/86Sr ratios can fingerprint small fractions (∼0.1%) of UPP produced water in freshwater. However, because Marcellus and UPP produced waters display similar major elemental chemistry (i.e., Na, Ca, and Cl) and overlapping ratios of Sr/Ca and 87Sr/86Sr, 228Ra/226Ra ratios may be the best tracer to distinguish these waters.


Assuntos
Isótopos , Poluentes Químicos da Água , Região dos Apalaches , Gás Natural , Ohio , Campos de Petróleo e Gás , Pennsylvania , Águas Residuárias , West Virginia
2.
Environ Sci Process Impacts ; 21(2): 224-241, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30452047

RESUMO

Accurate and precise analyses of oil and gas (O&G) wastewaters and solids (e.g., sediments and sludge) are important for the regulatory monitoring of O&G development and tracing potential O&G contamination in the environment. In this study, 15 laboratories participated in an inter-laboratory comparison on the chemical characterization of three O&G wastewaters from the Appalachian Basin and four solids impacted by O&G development, with the goal of evaluating the quality of data and the accuracy of measurements for various analytes of concern. Using a variety of different methods, analytes in the wastewaters with high concentrations (i.e., >5 mg L-1) were easily detectable with relatively high accuracy, often within ±10% of the most probable value (MPV). In contrast, often less than 7 of the 15 labs were able to report detectable trace metal(loid) concentrations (i.e., Cr, Ni, Cu, Zn, As, and Pb) with accuracies of approximately ±40%. Despite most labs using inductively coupled plasma mass spectrometry (ICP-MS) with low instrument detection capabilities for trace metal analyses, large dilution factors during sample preparation and low trace metal concentrations in the wastewaters limited the number of quantifiable determinations and likely influenced analytical accuracy. In contrast, all the labs measuring Ra in the wastewaters were able to report detectable concentrations using a variety of methods including gamma spectroscopy and wet chemical approaches following Environmental Protection Agency (EPA) standard methods. However, the reported radium activities were often greater than ±30% different to the MPV possibly due to calibration inconsistencies among labs, radon leakage, or failing to correct for self-attenuation. Reported radium activities in solid materials had less variability (±20% from MPV) but accuracy could likely be improved by using certified radium standards and accounting for self-attenuation that results from matrix interferences or a density difference between the calibration standard and the unknown sample. This inter-laboratory comparison illustrates that numerous methods can be used to measure major cation, minor cation, and anion concentrations in O&G wastewaters with relatively high accuracy while trace metal(loid) and radioactivity analyses in liquids may often be over ±20% different from the MPV.


Assuntos
Compostos Inorgânicos/análise , Laboratórios/organização & administração , Petróleo/análise , Poluentes Radioativos/análise , Águas Residuárias/química , Região dos Apalaches
3.
Environ Sci Technol ; 52(12): 7081-7091, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29845864

RESUMO

Thirteen states in the United States allow the spreading of O&G wastewaters on roads for deicing or dust suppression. In this study, the potential environmental and human health impacts of this practice are evaluated. Analyses of O&G wastewaters spread on roads in the northeastern, U.S. show that these wastewaters have salt, radioactivity, and organic contaminant concentrations often many times above drinking water standards. Bioassays also indicated that these wastewaters contain organic micropollutants that affected signaling pathways consistent with xenobiotic metabolism and caused toxicity to aquatic organisms like Daphnia magna. The potential toxicity of these wastewaters is a concern as lab experiments demonstrated that nearly all of the metals from these wastewaters leach from roads after rain events, likely reaching ground and surface water. Release of a known carcinogen (e.g., radium) from roads treated with O&G wastewaters has been largely ignored. In Pennsylvania from 2008 to 2014, spreading O&G wastewater on roads released over 4 times more radium to the environment (320 millicuries) than O&G wastewater treatment facilities and 200 times more radium than spill events. Currently, state-by-state regulations do not require radium analyses prior to treating roads with O&G wastewaters. Methods for reducing the potential impacts of spreading O&G wastewaters on roads are discussed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Daphnia , Humanos , Metais , Pennsylvania
4.
Geobiology ; 16(1): 88-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29322690

RESUMO

Through the use of scanning transmission electron microscopy (STEM) combined with other complementary techniques (SEM, cryo-TEM, HRTEM, and EELS), we have studied the interaction of microorganisms inhabiting deep anoxic waters of acidic pit lakes with dissolved aluminum, silica, sulfate, and ferrous iron. These elements were close to saturation (Al, SiO2 ) or present at very high concentrations (0.12 m Fe(II), 0.12-0.22 m SO42- ) in the studied systems. The anaerobic conditions of these environments allowed investigation of geomicrobial interactions that are difficult to see in oxidized, Fe(III)-rich environments. Detailed chemical maps and through-cell line scans suggest both extra- and intracellular accumulation of Al, Si, S, and Fe(II) in rod-like cells and other structures (e.g., spherical particles and bacteriomorphs) of probable microbial origin. The bacterial rods showed external nanometric coatings of adsorbed Fe(II) and Al on the cell surface and cell interiors with significant presence of Al, Si, and S. These microbial cells coexist with spherical particles showing similar configuration (Fe(II) external coatings and [Al, Si, S]-rich cores). The Al:Si and Al:S ratios and the good Al-Si correlation in the cell interiors suggest the concurrent formation of two amorphous phases, namely a proto-aluminosilicate with imogolite-like composition and proto-hydrobasaluminite. In both cases, the mineralization appears to comprise two stages: a first stage of aluminosilicate and Al-hydroxysulfate precipitation within the cell or around cellular exudates, and a second stage of SO42- and Fe(II) adsorption on surface sites existing on the mineral phases in the case of (SO42- ) or on presumed organic molecules [in the case of Fe(II)]. These microbially related solids could have been formed by permineralization and mineral replacement of senescent microbial cells. However, these features could also denote biomineralization by active bacterial cells as a detoxification mechanism, a possibility which should be further explored. We discuss the significance of the observed Al/microbe and Si/microbe interactions and the implications for clay mineral formation at low pH.


Assuntos
Silicatos de Alumínio/metabolismo , Precipitação Química , Microbiologia da Água , Silicatos de Alumínio/química , Anaerobiose , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Microbiota , Microscopia Eletrônica de Transmissão e Varredura , Solubilidade , Sulfatos/química
5.
Water Res ; 38(10): 2499-504, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15159153

RESUMO

The sorption kinetics of the divalent metals Zn, Co, Ni, and Cd to hematite were studied in single sorbate systems with high sorbate/sorbent ratios (from 1.67 to 3.33mol sorbate/mol sorption sites) in 10mM Na-piperazine N,N'-bis 2-ethane sulfonic acid (Na-PIPES) solution at pH 6.8. The experimental data showed a rapid initial sorption (half-time about 1min) followed by slower sorption that continued for 1-5 days. The sequence of fast to slow sorption kinetics was modeled by slow inner-sphere (IS) complexation in equilibrium with outer-sphere (OS) complexes. Although the OS reaction was fast and considered to be in equilibrium, the extent of OS complexation changed over time due to increased surface potential from the IS complexes. For example, the model showed that the dimensionless OS complexation function, K(os), decreased from 0.014 initially to 0.0016 at steady state due to sorption of 4x10(-5)M Zn(II) to 2gL(-1) hematite. Sorption rate constants, k(ads), for the various divalent metals ranged from 6.1 to 82.5M(-1)s(-1). Desorption rate constants, k(des), ranged from 5.2x10(-7) to 6.7x10(-5)s(-1). This study suggests that the conversion from OS to IS complex was the rate-determining step for the sorption of divalent metals on crystalline adsorbents.


Assuntos
Compostos Férricos/química , Metais Pesados/química , Purificação da Água/métodos , Adsorção , Cátions Bivalentes , Cloro/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Sulfitos/química , Ácidos Sulfônicos/química , Poluentes da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA