Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Atherosclerosis ; 397: 117608, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38880706

RESUMO

BACKGROUND AND AIMS: Dysregulated cholesterol metabolism is a hallmark of atherosclerotic cardiovascular diseases, yet our understanding of how endogenous cholesterol synthesis affects atherosclerosis is not clear. The energy sensor AMP-activated protein kinase (AMPK) phosphorylates and inhibits the rate-limiting enzyme in the mevalonate pathway HMG-CoA reductase (HMGCR). Recent work demonstrated that when AMPK-HMGCR signaling was compromised in an Apoe-/- model of hypercholesterolemia, atherosclerosis was exacerbated due to elevated hematopoietic stem and progenitor cell mobilization and myelopoiesis. We sought to validate the significance of the AMPK-HMGCR signaling axis in atherosclerosis using a non-germline hypercholesterolemia model with functional ApoE. METHODS: Male and female HMGCR S871A knock-in (KI) mice and wild-type (WT) littermate controls were made atherosclerotic by intravenous injection of a gain-of-function Pcsk9D374Y-adeno-associated virus followed by high-fat and high-cholesterol atherogenic western diet feeding for 16 weeks. RESULTS: AMPK activation suppressed endogenous cholesterol synthesis in primary bone marrow-derived macrophages from WT but not HMGCR KI mice, without changing other parameters of cholesterol regulation. Atherosclerotic plaque area was unchanged between WT and HMGCR KI mice, independent of sex. Correspondingly, there were no phenotypic differences observed in hematopoietic progenitors or differentiated immune cells in the bone marrow, blood, or spleen, and no significant changes in systemic markers of inflammation. When lethally irradiated female mice were transplanted with KI bone marrow, there was similar plaque content relative to WT. CONCLUSIONS: Given previous work, our study demonstrates the importance of preclinical atherosclerosis model comparison and brings into question the importance of AMPK-mediated control of cholesterol synthesis in atherosclerosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Aterosclerose , Colesterol , Hidroximetilglutaril-CoA Redutases , Pró-Proteína Convertase 9 , Animais , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Aterosclerose/enzimologia , Células Cultivadas , Colesterol/biossíntese , Colesterol/metabolismo , Colesterol/sangue , Modelos Animais de Doenças , Hidroximetilglutaril-CoA Redutases/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/enzimologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Transdução de Sinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-34567467

RESUMO

Cytomegalovirus (CMV) infection is asymptomatic in the majority of immunocompetent patients. However, it can cause severe presentations, particularly in patients who are immunocompromised. We are reporting a rare association between respiratory failure secondary to cavitary pneumonia and a large pericardial effusion due to CMV infection in a patient with human immunodeficiency virus. The patient presented with hypoxic respiratory failure and a large pericardial effusion at risk of tamponade. After extensive investigation, the sole pathogen identified in the patient's bronchoalveolar lavage and pericardial fluid was CMV.

3.
Hepatol Commun ; 3(1): 84-98, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30619997

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) regulates multiple signaling pathways involved in glucose and lipid metabolism in response to changes in hormonal and nutrient status. Cell culture studies have shown that AMPK phosphorylation and inhibition of the rate-limiting enzyme in the mevalonate pathway 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase (HMGCR) at serine-871 (Ser871; human HMGCR Ser872) suppresses cholesterol synthesis. In order to evaluate the role of AMPK-HMGCR signaling in vivo, we generated mice with a Ser871-alanine (Ala) knock-in mutation (HMGCR KI). Cholesterol synthesis was significantly suppressed in wild-type (WT) but not in HMGCR KI hepatocytes in response to AMPK activators. Liver cholesterol synthesis and cholesterol levels were significantly up-regulated in HMGCR KI mice. When fed a high-carbohydrate diet, HMGCR KI mice had enhanced triglyceride synthesis and liver steatosis, resulting in impaired glucose homeostasis. Conclusion: AMPK-HMGCR signaling alone is sufficient to regulate both cholesterol and triglyceride synthesis under conditions of a high-carbohydrate diet. Our findings highlight the tight coupling between the mevalonate and fatty acid synthesis pathways as well as revealing a role of AMPK in suppressing the deleterious effects of a high-carbohydrate diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA