Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37733372

RESUMO

Melanoma is an aggressive cancer typically arising from transformation of melanocytes residing in the basal layer of the epidermis, where they are in direct contact with surrounding keratinocytes. The role of keratinocytes in shaping the melanoma tumor microenvironment remains understudied. We previously showed that temporary loss of the keratinocyte-specific cadherin, Desmoglein 1 (Dsg1), controls paracrine signaling between normal melanocytes and keratinocytes to stimulate the protective tanning response. Here, we provide evidence that melanoma cells hijack this intercellular communication by secreting factors that keep Dsg1 expression low in the surrounding keratinocytes, which in turn generate their own paracrine signals that enhance melanoma spread through CXCL1/CXCR2 signaling. Evidence suggests a model whereby paracrine signaling from melanoma cells increases levels of the transcriptional repressor Slug, and consequently decreases expression of the Dsg1 transcriptional activator Grhl1. Together, these data support the idea that paracrine crosstalk between melanoma cells and keratinocytes resulting in chronic keratinocyte Dsg1 reduction contributes to melanoma cell movement associated with tumor progression.


Assuntos
Desmogleína 1 , Queratinócitos , Melanoma , Humanos , Movimento Celular , Desmogleína 1/genética , Epiderme , Melanoma/genética , Melanoma/patologia , Microambiente Tumoral/genética
2.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37471166

RESUMO

Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.


Assuntos
Actinas , Dermatopatias , Humanos , Pele/patologia , Acantólise/genética , Acantólise/metabolismo , Dermatopatias/complicações , Dermatopatias/patologia
3.
bioRxiv ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824910

RESUMO

Melanoma arises from transformation of melanocytes in the basal layer of the epidermis where they are surrounded by keratinocytes, with which they interact through cell contact and paracrine communication. Considerable effort has been devoted to determining how the accumulation of oncogene and tumor suppressor gene mutations in melanocytes drive melanoma development. However, the extent to which alterations in keratinocytes that occur in the developing tumor niche serve as extrinsic drivers of melanoma initiation and progression is poorly understood. We recently identified the keratinocyte-specific cadherin, desmoglein 1 (Dsg1), as an important mediator of keratinocyte:melanoma cell crosstalk, demonstrating that its chronic loss, which can occur through melanoma cell-dependent paracrine signaling, promotes behaviors that mimic a malignant phenotype. Here we address the extent to which Dsg1 loss affects early steps in melanomagenesis. RNA-Seq analysis revealed that paracrine signals from Dsg1-deficient keratinocytes mediate a transcriptional switch from a differentiated to undifferentiated cell state in melanocytes expressing BRAFV600E, a driver mutation commonly present in both melanoma and benign nevi and reported to cause growth arrest and oncogene-induced senescence (OIS). Of ~220 differentially expressed genes in BRAFV600E cells treated with Dsg1-deficient conditioned media (CM), the laminin superfamily member NTN4/Netrin-4, which inhibits senescence in endothelial cells, stood out. Indeed, while BRAFV600E melanocytes treated with Dsg1-deficient CM showed signs of senescence bypass as assessed by increased senescence-associated ß-galactosidase activity and decreased p16, knockdown of NTN4 reversed these effects. These results suggest that Dsg1 loss in keratinocytes provides an extrinsic signal to push melanocytes towards oncogenic transformation once an initial mutation has been introduced.

4.
Front Mol Biosci ; 9: 847505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755802

RESUMO

Liver kinase B1 (LKB1) is a potent tumor suppressor that regulates cellular energy balance and metabolism as an upstream kinase of the AMP-activated protein kinase (AMPK) pathway. LKB1 regulates cancer cell invasion and metastasis in multiple cancer types, including breast cancer. In this study, we evaluated LKB1's role as a regulator of the tumor microenvironment (TME). This was achieved by seeding the MDA-MB-231-LKB1 overexpressing cell line onto adipose and tumor scaffolds, followed by the evaluation of tumor matrix-induced tumorigenesis and metastasis. Results demonstrated that the presence of tumor matrix enhanced tumorigenesis in both MDA-MB-231 and MDA-MB-231-LKB1 cell lines. Metastasis was increased in both MDA-MB-231 and -LKB1 cells seeded on the tumor scaffold. Endpoint analysis of tumor and adipose scaffolds revealed LKB1-mediated tumor microenvironment remodeling as evident through altered matrix protein production. The proteomic analysis determined that LKB1 overexpression preferentially decreased all major and minor fibril collagens (collagens I, III, V, and XI). In addition, proteins observed to be absent in tumor scaffolds in the LKB1 overexpressing cell line included those associated with the adipose matrix (COL6A2) and regulators of adipogenesis (IL17RB and IGFBP4), suggesting a role for LKB1 in tumor-mediated adipogenesis. Histological analysis of MDA-MB-231-LKB1-seeded tumors demonstrated decreased total fibril collagen and indicated decreased stromal cell presence. In accordance with this, in vitro condition medium studies demonstrated that the MDA-MB-231-LKB1 secretome inhibited adipogenesis of adipose-derived stem cells. Taken together, these data demonstrate a role for LKB1 in regulating the tumor microenvironment through fibril matrix remodeling and suppression of adipogenesis.

5.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905516

RESUMO

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Assuntos
Desmogleína 1/imunologia , Desmossomos/imunologia , Queratinócitos/imunologia , Pênfigo/imunologia , Células Th17/imunologia , Animais , Desmogleína 1/genética , Desmossomos/genética , Camundongos , Pênfigo/genética
6.
Breast Cancer Res Treat ; 189(1): 49-61, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34196902

RESUMO

PURPOSE: Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. METHODS: Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. RESULTS: NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. CONCLUSION: While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.


Assuntos
Neoplasias da Mama , Quinases Relacionadas a NIMA , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Quinases Relacionadas a NIMA/genética , Fenótipo , RNA Interferente Pequeno
7.
Breast Cancer Res Treat ; 189(1): 25-37, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231077

RESUMO

PURPOSE: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated. METHODS: In the current study, we induced exogenous expression of ZEB2 in ER + MCF-7 and ZR-75-1 breast cancer cell lines and examined EMT gene expression and metastasis using dose-response qRT-PCR, transwell migration assays, proliferation assays with immunofluorescence of Ki-67 staining. We used RNA sequencing to identify pathways and genes affected by ZEB2 overexpression. Finally, we treated ZEB2-overexpressing cells with 17ß-estradiol (E2) or ICI 182,780 to evaluate how ZEB2 affects estrogen response. RESULTS: Contrary to expectation, we found that ZEB2 did not increase canonical epithelial nor decrease mesenchymal gene expressions. Furthermore, ZEB2 overexpression did not promote a mesenchymal cell morphology. However, ZEB1 and ZEB2 protein expression induced significant migration of MCF-7 and ZR-75-1 breast cancer cells in vitro and MCF-7 xenograft metastasis in vivo. Transcriptomic (RNA sequencing) pathway analysis revealed alterations in estrogen signaling regulators and pathways, suggesting a role for ZEB2 in endocrine sensitivity in luminal A breast cancer. Expression of ZEB2 was negatively correlated with estrogen receptor complex genes in luminal A patient tumors. Furthermore, treatment with 17ß-estradiol (E2) or the estrogen receptor antagonist ICI 182,780 had no effect on growth of ZEB2-overexpressing cells. CONCLUSION: ZEB2 is a multi-functional regulator of drug sensitivity, cell migration, and metastasis in ER + breast cancer and functions through non-canonical mechanisms.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
8.
Oncoscience ; 8: 64-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026925

RESUMO

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.

9.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33876843

RESUMO

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-fos/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase 5/genética , Células MCF-7 , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias de Mama Triplo Negativas/genética
11.
Oncol Lett ; 21(5): 380, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777204

RESUMO

Chemokine receptor 4 (CXCR4) and its ligand stromal-derived factor 1 (SDF-1) have well-characterized functions in cancer metastasis; however, the specific mechanisms through which CXCR4 promotes a metastatic and drug-resistant phenotype remain widely unknown. The aim of the present study was to demonstrate the application of a phenotypic screening approach using a small molecule inhibitor library to identify potential CXCR4-mediated signaling pathways. The present study demonstrated a new application of the Published Kinase Inhibitor Set (PKIS), a library of small molecule inhibitors from diverse chemotype series with varying levels of selectivity, in a phenotypic medium-throughput screen to identify potential mechanisms to pursue. Crystal violet staining and brightfield microscopy were employed to evaluate relative cell survival and changes to cell morphology in the screens. 'Hits' or lead active compounds in the first screen were PKIS inhibitors that reversed mesenchymal morphologies in CXCR4-activated breast cancer cells without the COOH-terminal domain (MCF-7-CXCR4-ΔCTD) and in the phenotypically mesenchymal triple-negative breast cancer cells (MDA-MB-231, BT-549 and MDA-MB-157), used as positive controls. In a following screen, the phenotypic and cell viability screen was used with a positive control that was both morphologically mesenchymal and had acquired fulvestrant resistance. Compounds within the same chemotype series were identified that exhibited biological activity in the screens, the 'active' inhibitors, were compared with inactive compounds. Relative kinase activity was obtained using published datasets to discover candidate kinase targets responsible for CXCR4 activity. MAP4K4 and MINK reversed both the mesenchymal and drug-resistant phenotypes, NEK9 and DYRK2 only reversed the mesenchymal morphology, and kinases, including ROS, LCK, HCK and LTK, altered the fulvestrant-resistant phenotype. Oligoarray experiments revealed pathways affected in CXCR4-activated cells, and these pathways were compared with the present screening approach to validate our screening tool. The oligoarray approach identified the integrin-mediated, ephrin B-related, RhoA, RAC1 and ErbB signaling pathways to be upregulated in MCF-7-CXCR4-ΔCTD cells, with ephrin B signaling also identified in the PKIS phenotypic screen. The present screening tool may be used to discover potential mechanisms of targeted signaling pathways in solid cancers.

12.
PLoS One ; 15(10): e0226464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035223

RESUMO

Metaplastic breast carcinoma (MBC) is a clinically aggressive and rare subtype of breast cancer, with similar features to basal-like breast cancers. Due to rapid growth rates and characteristic heterogeneity, MBC is often unresponsive to standard chemotherapies; and novel targeted therapeutic discovery is urgently needed. Histone deacetylase inhibitors (DACi) suppress tumor growth and metastasis through regulation of the epithelial-to-mesenchymal transition axis in various cancers, including basal-like breast cancers. We utilized a new MBC patient-derived xenograft (PDX) to examine the effect of DACi therapy on MBC. Cell morphology, cell cycle-associated gene expressions, transwell migration, and metastasis were evaluated in patient-derived cells and tumors after treatment with romidepsin and panobinostat. Derivations of our PDX model, including cells, spheres, organoids, explants, and in vivo implanted tumors were treated. Finally, we tested the effects of combining DACi with approved chemotherapeutics on relative cell biomass. DACi significantly suppressed the total number of lung metastasis in vivo using our PDX model, suggesting a role for DACi in preventing circulating tumor cells from seeding distal tissue sites. These data were supported by our findings that DACi reduced cell migration, populations, and expression of mesenchymal-associated genes. While DACi treatment did affect cell cycle-regulating genes in vitro, tumor growth was not affected compared to controls. Importantly, gene expression results varied depending on the cellular or tumor system used, emphasizing the importance of using multiple derivations of cancer models in preclinical therapeutic discovery research. Furthermore, DACi sensitized and produced a synergistic effect with approved oncology therapeutics on inherently resistant MBC. This study introduced a role for DACi in suppressing the migratory and mesenchymal phenotype of MBC cells through regulation of the epithelial-mesenchymal transition axis and suppression of the CTC population. Preliminary evidence that DACi treatment in combination with MEK1/2 inhibitors exerts a synergistic effect on MBC cells was also demonstrated.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Depsipeptídeos/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Panobinostat/administração & dosagem , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Pulmonares/genética , Camundongos , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/efeitos dos fármacos , Panobinostat/farmacologia , Modelagem Computacional Específica para o Paciente , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia
13.
Front Oncol ; 10: 1164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850332

RESUMO

Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. In vivo xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.

14.
Anticancer Drugs ; 31(8): 759-775, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32796402

RESUMO

Breast cancer affects women globally; the majority of breast cancer-related mortalities are due to metastasis. Acquisition of a mesenchymal phenotype has been implicated in the progression of breast cancer cells to an invasive, metastatic state. Triple-negative breast cancer (TNBC) subtypes have high rates of metastases, recurrence, and have poorer prognoses compared to other breast cancer types, partially due to lack of commonly targeted receptors. Kinases have diverse and pivotal functions in metastasis in TNBC, and discovery of new kinase targets for TNBC is warranted. We previously used a screening approach to identify intermediate-synthesis nonpotent, nonselective small-molecule inhibitors from the Published Kinase Inhibitor Set that reversed the mesenchymal phenotype in TNBC cells. Two of these inhibitors (GSK346294A and GSK448459A) are structurally similar, but have unique kinase activity profiles and exhibited differential biologic effects on TNBC cells, specifically on epithelial-to-mesenchymal transition (EMT). Here, we further interrogate these effects and compare activity of these inhibitors on transwell migration, gene (qRT-PCR) and protein (western blot) expressions, and cancer stem cell-like behavior. We incorporated translational patient-derived xenograft models in these studies, and we focused on the lead inhibitor hit, GSK346294A, to demonstrate the utility of our comparative analysis as a screening modality to identify novel kinase targets and signaling pathways to pursue in TNBC. This study introduces a new method for discovering novel kinase targets that reverse the EMT phenotype; this screening approach can be applied to all cancer types and is not limited to breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Estrutura Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Pigment Cell Melanoma Res ; 33(2): 305-317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31563153

RESUMO

The epidermis is the first line of defense against ultraviolet (UV) light from the sun. Keratinocytes and melanocytes respond to UV exposure by eliciting a tanning response dependent in part on paracrine signaling, but how keratinocyte:melanocyte communication is regulated during this response remains understudied. Here, we uncover a surprising new function for the keratinocyte-specific cell-cell adhesion molecule desmoglein 1 (Dsg1) in regulating keratinocyte:melanocyte paracrine signaling to promote the tanning response in the absence of UV exposure. Melanocytes within Dsg1-silenced human skin equivalents exhibited increased pigmentation and altered dendrite morphology, phenotypes which were confirmed in 2D culture using conditioned media from Dsg1-silenced keratinocytes. Dsg1-silenced keratinocytes increased melanocyte-stimulating hormone precursor (Pomc) and cytokine mRNA. Melanocytes cultured in media conditioned by Dsg1-silenced keratinocytes increased Mitf and Tyrp1 mRNA, TYRP1 protein, and melanin production and secretion. Melanocytes in Dsg1-silenced skin equivalents mislocalized suprabasally, reminiscent of early melanoma pagetoid behavior. Together with our previous report that UV reduces Dsg1 expression, these data support a role for Dsg1 in controlling keratinocyte:melanocyte paracrine communication and raise the possibility that a Dsg1-deficient niche contributes to pagetoid behavior, such as occurs in early melanoma development.


Assuntos
Desmogleína 1/metabolismo , Queratinócitos/metabolismo , Melanócitos/metabolismo , Comunicação Parácrina , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Recém-Nascido , Queratinócitos/efeitos dos fármacos , Masculino , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Modelos Biológicos , Pigmentação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/efeitos dos fármacos
16.
Breast Cancer Res ; 21(1): 67, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118047

RESUMO

BACKGROUND: Breast cancer is the second leading cause of cancer deaths in the USA. Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with high rates of metastasis, tumor recurrence, and resistance to therapeutics. Obesity, defined by a high body mass index (BMI), is an established risk factor for breast cancer. Women with a high BMI have increased incidence and mortality of breast cancer; however, the mechanisms(s) by which obesity promotes tumor progression are not well understood. METHODS: In this study, obesity-altered adipose stem cells (obASCs) were used to evaluate obesity-mediated effects of TNBC. Both in vitro and in vivo analyses of TNBC cell lines were co-cultured with six pooled donors of obASCs (BMI > 30) or ASCs isolated from lean women (lnASCs) (BMI < 25). RESULTS: We found that obASCs promote a pro-metastatic phenotype by upregulating genes associated with epithelial-to-mesenchymal transition and promoting migration in vitro. We confirmed our findings using a TNBC patient-derived xenograft (PDX) model. PDX tumors grown in the presence of obASCS in SCID/beige mice had increased circulating HLA1+ human cells as well as increased numbers of CD44+CD24- cancer stem cells in the peripheral blood. Exposure of the TNBC PDX to obASCs also increased the formation of metastases. The knockdown of leptin expression in obASCs suppressed the pro-metastatic effects of obASCs. CONCLUSIONS: Leptin signaling is a potential mechanism through which obASCs promote metastasis of TNBC in both in vitro and in vivo analyses.


Assuntos
Tecido Adiposo/citologia , Transformação Celular Neoplásica/metabolismo , Leptina/biossíntese , Células-Tronco/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Biópsia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Leptina/genética , Camundongos , Obesidade/metabolismo , Neoplasias de Mama Triplo Negativas/etiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
BMC Cancer ; 19(1): 205, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845999

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) represents an aggressive subtype with limited therapeutic options. Experimental preclinical models that recapitulate their tumors of origin can accelerate target identification, thereby potentially improving therapeutic efficacy. Patient-derived xenografts (PDXs), due to their genomic and transcriptomic fidelity to the tumors from which they are derived, are poised to improve the preclinical testing of drug-target combinations in translational models. Despite the previous development of breast and TNBC PDX models, those derived from patients with demonstrated health-disparities are lacking. METHODS: We use an aggressive TNBC PDX model propagated in SCID/Beige mice that was established from an African-American woman, TU-BcX-2 K1, and assess its metastatic potential and drug sensitivities under distinct in vitro conditions. Cellular derivatives of the primary tumor or the PDX were grown in 2D culture conditions or grown in mammospheres 3D culture. Flow cytometry and fluorescence staining was used to quantify cancer stem cell-like populations. qRT-PCR was used to describe the mesenchymal gene signature of the tumor. The sensitivity of TU-BcX-2 K1-derived cells to anti-neoplastic oncology drugs was compared in adherent cells and mammospheres. Drug response was evaluated using a live/dead staining kit and crystal violet staining. RESULTS: TU-BcX-2 K1 has a low propensity for metastasis, reflects a mesenchymal state, and contains a large burden of cancer stem cells. We show that TU-BcX-2 K1 cells have differential responses to cytotoxic and targeted therapies in 2D compared to 3D culture conditions insofar as several drug classes conferred sensitivity in 2D but not in 3D culture, or cells grown as mammospheres. CONCLUSIONS: Here we introduce a new TNBC PDX model and demonstrate the differences in evaluating drug sensitivity in adherent cells compared to mammosphere, or suspension, culture.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Imunofluorescência , Inibidores de Histona Desacetilases/farmacologia , Humanos , Imuno-Histoquímica , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Res ; 17(5): 1195-1206, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655320

RESUMO

Loss of the desmosomal cell-cell adhesion molecule, Desmoglein 1 (Dsg1), has been reported as an indicator of poor prognosis in head and neck squamous cell carcinomas (HNSCC) overexpressing epidermal growth factor receptor (EGFR). It has been well established that EGFR signaling promotes the formation of invadopodia, actin-based protrusions formed by cancer cells to facilitate invasion and metastasis, by activating pathways leading to actin polymerization and ultimately matrix degradation. We previously showed that Dsg1 downregulates EGFR/Erk signaling by interacting with the ErbB2-binding protein Erbin (ErbB2 Interacting Protein) to promote keratinocyte differentiation. Here, we provide evidence that restoring Dsg1 expression in cells derived from HNSCC suppresses invasion by decreasing the number of invadopodia and matrix degradation. Moreover, Dsg1 requires Erbin to downregulate EGFR/Erk signaling and to fully suppress invadopodia formation. Our findings indicate a novel role for Dsg1 in the regulation of invadopodia signaling and provide potential new targets for development of therapies to prevent invadopodia formation and therefore cancer invasion and metastasis. IMPLICATIONS: Our work exposes a new pathway by which a desmosomal cadherin called Dsg1, which is lost early in head and neck cancer progression, suppresses cancer cell invadopodia formation by scaffolding ErbB2 Interacting Protein and consequent attenuation of EGF/Erk signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Desmogleína 1/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Podossomos/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Desmogleína 1/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Sistema de Sinalização das MAP Quinases , Invasividade Neoplásica , Podossomos/genética
19.
Oncoscience ; 5(3-4): 99-108, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29854878

RESUMO

Claudin-low triple negative breast cancer (CL-TNBC) is a clinically aggressive molecular TNBC subtype characterized by a propensity to metastasize, recur and acquire chemoresistance. CL-TNBC has a diverse intra- and extracellular composition and microenvironment, and currently there are no clinically approved targeted therapies. Histone deacetylase inhibitors (HDACi) have been investigated as therapeutic agents targeting invasive TNBC phenotypes. However, further studies are required to evaluate HDAC inhibition in CL-TNBC. Here, we utilize a novel CL- TNBC patient-derived xenograft model to study the various and diverse therapeutic potential targets within CL-TNBC tumors. To evaluate effects of the pan-HDACi panobinostat on metastasis and the mesenchymal phenotype of CL-TNBC, we utilize immunohistochemistry staining and qRT-PCR in in vitro, ex vivo and in vivo studies. Further, we evaluate pan-HDAC inhibition on stem-like subpopulations using 3D mammosphere culture techniques and quantification. Finally, we show that pan- HDACi suppresses collagen expression in CL-TNBC. In this study, we provide evidence that pan-HDAC inhibition has effects on various components of the CL-TNBC subtype, and we demonstrate the potential of our novel CL-TNBC PDX model in therapeutic discovery research.

20.
Breast Cancer Res Treat ; 169(2): 381-390, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29392581

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. METHODS: We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. RESULTS: Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. CONCLUSIONS: Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.


Assuntos
Proliferação de Células/genética , Claudinas/genética , Recidiva Local de Neoplasia/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA