RESUMO
Studies on the electrochemical hydrogenation (ECH) of levulinic acid (LA) to valeric acid (VA) or γ-valerolactone (GVL) have mainly focused on the electrochemical reduction of LA in acidic aqueous solutions. However, the narrow range of applied potentials has hindered understanding of some mechanistic aspects of LA electrochemical conversion. Earlier, we discovered that employing proton-deficient non-aqueous reaction media provides more comprehensive insights into the mechanism of LA electrochemical reduction. Here, we conducted further investigations into the LA electroreduction process using cyclic voltammetry in various organic solvents on a Pt electrode and on various electrode materials in acetonitrile, both with and without the addition of proton donors. The products of the ECH processes were identified using HPLC. The solvent nature, the presence of proton donors, the electrode material, and the applied potential strongly influence the LA electroreduction process. This study reveals that LA, in the presence proton donors, can undergo electrochemical reduction through different pathways, depending on the difference (ΔE1/2) between the reduction half-wave potential of protons and LA on a certain electrode. When the difference is large, the LA reduction is incomplete and the formation of GVL is observed. Under the close reduction potentials of protons and LA, LA can be completely reduced to VA.
RESUMO
A series of trinuclear µ3-vinylidene ReFePt clusters were synthesized by the application of two approaches: (i) reactions of the binuclear RePt µ-vinylidene complexes with Fe2(CO)9; (ii) ligand substitution or exchange reactions at the Pt atom in the synthesized ReFePt clusters. The molecular structures of CpReFePt(µ3-CîCHPh)(CO)5[P(OEt)3]L [L = CO; P(OEt)3] were determined by an X-ray diffraction study. The obtained compounds were studied by IR and 1H, 13C and 31P NMR spectroscopy. The spectroscopic study revealed that the clusters CpReFePt(µ3-CîCHPh)(CO)5[P(OEt)3]L [L = CO; P(OEt)3] and CpReFePt(µ3-CîCHPh)(CO)6[P(OPri)3] undergo isomerization upon dissolution, resulting in three isomers with different positions of the µ3-vinylidene ligand over the ReFePt core. The redox properties of the clusters were studied by electrochemical methods. The relatively stable cation-radicals obtained by chemical oxidation of CpReFePt(µ3-CîCHPh)(CO)6[P(OPri)3] and CpReFePt(µ3-CîCHPh)(CO)5[P(OEt)3]2 with ferrocenium tetrafluoroborate were characterized by EPR spectroscopy.
RESUMO
African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available, and progress is hindered by lack of knowledge concerning the extent of ASF virus (ASFV) strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Previously, we demonstrated that ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin (EP153R) are important for protection against homologous ASF infection. Here, we identified six discrete T-cell epitope regions present on CD2v and C-type lectin using IFN-γ ELISpot assay and PBMCs from ASF immune animals, indicating cellular reactivity to these proteins in the context of ASFV infection and protective immunity. Notably, three of the epitope regions map to previously described serotype-specific signature regions of these proteins. Improved understanding of ASFV protective antigens, relevant epitopes and their diversity in nature will facilitate ASFV subunit vaccine design and development.
Assuntos
Vírus da Febre Suína Africana/imunologia , Epitopos de Linfócito T , Lectinas Tipo C/imunologia , Proteínas Virais/imunologia , Animais , ELISPOT , Mapeamento de Epitopos , Interferon gama/metabolismo , SuínosRESUMO
Conventional methods, which quantitatively assess virus replication, are based on direct examination of viral cytopathic effect (CPE), which is time consuming, tedious and based on endpoint reading. The Real-Time Cell Analysis (RTCA) xCELLigence® system offers an alternative approach to evaluate virus-induced CPE, and here was evaluated as a means to dynamically assess CPE caused by African swine fever virus (ASFV). RTCA was used to identify optimum time for ASFV infection based on cell index (CI) and to evaluate ASFV CPE kinetics in COS-1 cells. Data indicated that the RTCA has tremendous potential to methodologically and quantitatively improve assays used to study efficiency of ASFV drug inhibitors and neutralizing antibodies.
Assuntos
Vírus da Febre Suína Africana/crescimento & desenvolvimento , Técnicas Citológicas/métodos , Efeito Citopatogênico Viral , Carga Viral/métodos , Replicação Viral , Animais , Células COS , Chlorocebus aethiops , Fatores de TempoRESUMO
Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.
Assuntos
Lagovirus/classificação , RNA Viral/genética , Terminologia como Assunto , Animais , Infecções por Caliciviridae/virologia , Genótipo , Lebres , Lagovirus/genética , Lagovirus/patogenicidade , Filogenia , CoelhosRESUMO
African swine fever (ASF) is one of the most devastating diseases affecting the swine industry worldwide. No effective vaccine is currently available for disease prevention and control. Although live attenuated vaccines (LAV) have demonstrated great potential for immunizing against homologous strains of African swine fever virus (ASFV), adverse reactions from LAV remain a concern. Here, by using a homologous ASFV Congo strain system, we show passage-attenuated Congo LAV to induce an efficient protective immune response against challenge with the virulent parental Congo strain. Notably, only the parental challenge Congo strain was identified in blood and organs of recovered pigs through B602L gene PCR, long-range PCR, nucleotide sequencing and virus isolation. Thus, despite the great protective potential of homologous attenuated ASFV strain, the challenge Congo strain can persist for weeks in recovered pigs and a recrudescence of virulent virus at late time post-challenge may occur.
Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Sequência de Aminoácidos , Animais , Suínos , Vacinas Atenuadas/imunologia , Carga Viral , Proteínas Virais , Vacinas Virais/imunologia , VirulênciaRESUMO
A strategy for non-target analysis of samples with unknown composition by capillary electrophoresis (CE) with ultraviolet (UV) detection is suggested. The strategy is based on the preliminary identification of analytes and further optimization of the conditions for their separation using the developed computational tool set ElphoSeparation. It is shown that, in order to record electrophoretic peaks with the mobilities from the maximum to minimum possible values, the positive and negative voltage polarity and hydrodynamic pressure should be used. To choose the optimal separation conditions, dynamic maps of electrophoretic separation (DMES) are suggested. DMES is a bar chart with theoretical resolutions of adjacent peaks presented in ascending order of the migration time. The resolution is calculated as the division of the difference of the effective electrophoretic mobilities of adjacent analytes by their average peak width in terms of electrophoretic mobility. The suggested strategy is tested by the example of the analysis of herbal medicine (Holosas) on the basis of rose hips. The approach should be used to analyze samples with not very complex composition, such as environmental water and precipitation samples, process liquors, some vegetable extracts, biological fluids, food, and other samples for the determination of widespread compounds capable of forming ionic species. For samples with complex composition, the approach used together with other techniques may produce advantageous information due to specificity of the method, particularly it can be useful for determination of compounds suffering from low volatility or thermal stability, and for analysis of samples with difficult matrices. Graphical Abstract The scheme of performing the non-target ionic analysis by capillary electrophoresis with ultraviolet detection.
Assuntos
Eletroforese Capilar/métodos , Espectrofotometria Ultravioleta/métodos , ÍonsRESUMO
The influence of analyte concentration when compared with the concentration of a charged ligand in background electrolyte (BGE) on the measured values of electrophoretic mobilities and stability constants (association, binding or formation constants) is studied using capillary electrophoresis (CE) and a dynamic mathematical simulator of CE. The study is performed using labile complexes (with fast kinetics) of iron (III) and 5-sulfosalicylate ions (ISC) as an example. It is shown that because the ligand concentration in the analyte zone is not equal to that in BGE, considerable changes in the migration times and electrophoretic mobilities are observed, resulting in systematic errors in the stability constant values. Of crucial significance is the slope of the dependence of the electrophoretic mobility decrease on the ligand equilibrium concentration. Without prior information on this dependence to accurately evaluate the stability constants for similar systems, the total ligand concentration must be at least >50-100 times higher than the total concentration of analyte. Experimental ISC peak fronting and the difference between the direction of the experimental pH dependence of the electrophoretic mobility decrease and the mathematical simulation allow assuming the presence of capillary wall interaction.
RESUMO
Since the first introduction of rabbit hemorrhagic disease (RHD) in 1986, disease outbreaks have been continuously reported in different regions of Russia. Despite extensive vaccination, sporadic RHD cases are still reported. Here, we examine eleven RHDV strains originating from disease outbreaks occurring between 2003 and 2012 and one widely used vaccine strain. Notable phenotypic and genetic heterogeneity among RHDV strains was observed. The RHDV strains Tambov-2010, Perm-2010, Manihino-09 showed different hemagglutinating activity (HA) at 4 °C and room temperature. While all RHDV field strains were identified as hemagglutinating virulent viruses of the RHDVa variant, the vaccine strain was assigned as a "classical" RHDV. These data indicate that since 2003, RHDVa has become the predominant variant circulating in Russia.
Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Coelhos/virologia , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Surtos de Doenças , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/genética , Filogenia , Federação Russa/epidemiologia , Proteínas Virais/genéticaRESUMO
African swine fever virus (ASFV) causes highly lethal hemorrhagic disease among pigs, and ASFV's extreme antigenic diversity hinders vaccine development. We show that p72 ASFV phylogenetic analysis does not accurately define ASFV hemadsorption inhibition assay serogroups. Thus, conventional ASFV genotyping cannot discriminate between viruses of different virulence or predict efficacy of a specific ASFV vaccine.
Assuntos
Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Genótipo , Sorogrupo , Febre Suína Africana/epidemiologia , Animais , Genes Virais , Geografia Médica , Saúde Global , Filogenia , SuínosRESUMO
The system peaks that often appear on electropherograms in anion separation by CE with indirect spectrophotometric detection, negative voltage polarity and cathodic EOF are studied. The system peaks are shown to correspond to the zones with the changed concentration of the BGE constituents; they appear while the zone of each analyte anion passes through the outlet end of the capillary and are transported to the detector by EOF. An equation is suggested for predicting migration times of the system peaks with an error of 1%. The ratios of the system peak area to the analyte peak area are found to amount to 20%. It is shown that it is possible to avoid overlapping of the system peaks and analyte peaks by controlling the EOF velocity owing to hydrodynamic pressure. Using the mathematical simulation of CE shows that the system peaks and baseline shift can result from changing the transference numbers of the BGE ions and analyte ions at the capillary edge. The cases when the system peak may be incorrectly identified as the peak of analyte ion are considered. In order to avoid such errors, some practical recommendations are given.