Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124426

RESUMO

The development of advanced electrode materials has significantly enhanced the capabilities of electrochemical devices, enabling their application in diverse fields such as environmental monitoring, medical diagnostics, food safety, and industrial processes [...].

2.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591996

RESUMO

In this study, a carbon ceramic electrode (CCE) with improved electroanalytical performance was developed by bulk-modifying it with bismuth(III) oxide nanoparticles (Bi-CCE). Characterization of the Bi-CCE was conducted employing atomic force microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. Comparative analysis was conducted using an unmodified CCE. The findings proved that the incorporation of Bi2O3 nanoparticles into the CCE significantly altered the morphology and topography of the ceramic composite, and it improved the electrochemical properties of CCE. Notably, the Bi-CCE demonstrated a prolonged operational lifespan of at least three months, and there was a high reproducibility of the electrode preparation procedure. The developed Bi-CCE was effectively employed to explore the electrochemical behavior and quantify the priority environmental pollutant 4-chloro-3-methylphenol (PCMC) using CV and square-wave voltammetry (SWV), respectively. Notably, the developed SWV procedure utilizing Bi-CCE exhibited significantly enhanced sensitivity (0.115 µA L mol-1), an extended linearity (0.5-58.0 µmol L-1), and a lower limit of detection (0.17 µmol L-1) in comparison with the unmodified electrode. Furthermore, the Bi-CCE was utilized effectively for the detection of PCMC in a river water sample intentionally spiked with the compound. The selectivity toward PCMC determination was also successfully assessed.

3.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399092

RESUMO

This study outlines the fabrication process of an electrochemical platform utilizing glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and palladium nanoparticles (PdNPs). The MWCNTs were applied on the GCE surface using the drop-casting method and PdNPs were produced electrochemically by a potentiostatic method employing various programmed charges from an ammonium tetrachloropalladate(II) solution. The resulting GCEs modified with MWCNTs and PdNPs underwent comprehensive characterization for topographical and morphological attributes, utilizing atomic force microscopy and scanning electron microscopy along with energy-dispersive X-ray spectrometry. Electrochemical assessment of the GCE/MWCNTs/PdNPs involved cyclic voltammetry (CV) and electrochemical impedance spectroscopy conducted in perchloric acid solution. The findings revealed even dispersion of PdNPs, and depending on the electrodeposition parameters, PdNPs were produced within four size ranges, i.e., 10-30 nm, 20-40 nm, 50-60 nm, and 70-90 nm. Additionally, the electrocatalytic activity toward formaldehyde oxidation was assessed through CV. It was observed that an increase in the size of the PdNPs corresponded to enhanced catalytic activity in the formaldehyde oxidation reaction on the GCE/MWCNTs/PdNPs. Furthermore, satisfactory long-term stability over a period of 42 days was noticed for the GCE/MWCNTs/PDNPs(100) material which demonstrated the best electrocatalytic properties in the electrooxidation reaction of formaldehyde.

4.
Materials (Basel) ; 15(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36363278

RESUMO

The present paper describes the effect of the concentration of two graphene oxides (with different oxygen content) in the modifier layer on the electrochemical and structural properties of noble metal disk electrodes used as working electrodes in voltammetry. The chemistry of graphene oxides was tested using EDS, FTIR, UV-Vis spectroscopy, and combustion analysis. The structural properties of the obtained modifier layers were examined by means of scanning electron and atomic force microscopy. Cyclic voltammetry was employed for comparative electrochemical studies.

5.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329648

RESUMO

The interfacial polycondensation of titanium dioxide was studied at the bare and fiberglass membrane supported polarized liquid-liquid interface (LLI). Titanium dioxide synthesis was derived from the titanium (IV) tetrabutoxide (initially dissolved in the 1,2-dichloroethane) interfacial hydrolysis followed by its condensation. Experimental parameters, such as the pH of the aqueous phase and the influence of titanium alkoxide concentration in the organic phase on the electrochemical signal and material morphology, were investigated. The latter was achieved with fiberglass membranes used as the LLI support during TiO2 interfacial deposition. Cyclic voltammetry was used for the in situ studies, whereas scanning electron microscopy, energy-dispersive X-ray spectroscopy, and infrared spectroscopy were used during ex situ examination. The interfacial polycondensation reaction could be studied using electrified LLI and resulted in the material being a TiO2 film alone or film decorated with particles.

6.
ChemistryOpen ; 9(12): 1229-1235, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33304738

RESUMO

The paper presents a study of the effect of a constant magnetic field (CMF) on the basic processes of quercetin electrochemical reactions. According to the observation made in previous studies, the presence of a double bond in the C-ring of quercetin enhances the antioxidant properties of that compound, whereas the presence of -OH groups also affects the antioxidant properties. Using cyclic voltammetry it was found that the constant magnetic field improves the efficiency of quercetin electrooxidation, especially of the third stage of the process, i. e. the stage in which the oxidation of the OH groups in the A-ring is the most difficult. The use of HPLC confirmed the electrochemical measurements and the results of cyclic voltammetry studies. The beneficial effect of the magnetic field on the efficiency of quercetin oxidation was confirmed by the results of impedance spectroscopy measurements.


Assuntos
Ácido Gálico/análogos & derivados , Glucosídeos/química , Campos Magnéticos , Eletroquímica , Ácido Gálico/química , Hidróxidos/química , Cinética , Oxirredução
7.
Materials (Basel) ; 13(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213027

RESUMO

Titanium and its alloys are characterized by high mechanical strength, good corrosion resistance, high biocompatibility and relatively low Young's modulus. For many years, one of the most commonly used and described titanium alloys has been Ti-6Al-4V. The great interest in this two-phase titanium alloy is due to the broad possibilities of shaping its mechanical and physico-chemical properties using modern surface engineering techniques. The high coefficient of friction and tendency to galling are the most important drawbacks limiting the application of this material in many areas. In this regard, such methods as carburizing, nitriding, oxidation, and the synthesis of thin films using physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods may significantly improve the tribological properties of titanium alloys. The influence of thermo-chemical treatment (oxidation, carburizing and nitriding) on tribological properties and corrosion resistance of Ti-6Al-4V alloy is presented in this paper. The results include metallographic studies, analysis of tribological and mechanical properties and corrosion resistance as well. They indicate significant improvements in mechanical properties manifested by a twofold increase in hardness and improved corrosion resistance for the oxidation process. The carburizing was most important for reducing the coefficient of friction and wear rate. The nitriding process had the least effect on the properties of Ti-6Al-4V alloy.

8.
Anal Chim Acta ; 1011: 35-39, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29475483

RESUMO

The effect of constant magnetic field strength on activation of sensors modified with graphene oxide monolayers was investigated. The use of constant magnetic field resulted in improved electroanalytical properties of the sensors. It was proven that level of GO activation is clearly related to constant magnetic field strength. Moreover, it was demonstrated that observed phenomenon is stable in time.

9.
Acta Bioeng Biomech ; 15(1): 87-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23957237

RESUMO

In this work, we performed comparative studies of the effect of surface preparation of Ti6Al4V and Ti6Al7Nb biomedical alloys and the influence of endothelial cells on their corrosion behaviour in PBS (Phosphate Buffered Saline). Two different methods of surface modification were applied - polishing and sandblasting. The polished Ti6Al7Nb alloy was found to have the best resistance against general corrosion in PBS. It was characterized by the lowest corrosion rate, the widest passive range and the lowest reactivity. Both alloys prepared by sandblasting exhibited worse corrosion properties in comparison to the polished ones. This can be associated with a greater development of their surface and the presence of Al2O3 grains which caused an increase of corrosion potential but might also influence the weakening of the passive layer. Results of potentiodynamic anodic polarization indicated that more resistant to pitting corrosion was Ti6Al7Nb alloy regardless of the method of surface preparation. In those cases, anodic polarization caused only an increase of passive layer, while in the case of sandblasted Ti6Al4V alloy it caused a pitting corrosion. The results obtained allowed us to conclude that the niobium-titanium alloys had higher corrosion resistance than titanium alloys with vanadium. Moreover, it was stated that endothelial cells improved the corrosion resistance of all the titanium alloys examined.


Assuntos
Teste de Materiais/métodos , Dióxido de Silício/farmacologia , Titânio/farmacologia , Ligas , Linhagem Celular , Corrosão , Impedância Elétrica , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Potenciometria , Soluções , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA