Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404986, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159142

RESUMO

Corrosion processes are often discussed as stochastic events. Here, it is shown that some of these seemingly random processes are not driven by nanoscopic fluctuations but rather by the spatial distribution of micrometer-scale heterogeneities that trigger fast reactions associated with corrosion. Using a novel excitable reaction-diffusion model, corrosion waves traveling over the metal surface and the associated material loss are described. This resulting nonuniform corrosion penetration, seen as a height loss in modeling, exposes buried intermetallic particles, which depending on the local electrochemical state of the surface trigger or block new waves. Informed by quantitative experimental data for the Mg-Al-Zn alloy AZ31B, wave speeds, wave widths, and average material loss are accurately captured. Morphogenic mitigation based on wave-breaking microparticles is also simulated. While AZ31B corrosion is identified as a process driven by rare-wave events, this study predicts several other corrosion regimes that proceed via spots or patchy patterns, opening the door for new protection, design, and prediction strategies.

2.
Micron ; 118: 43-49, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30583220

RESUMO

It is well known that damage induced by impinging Ga+ ions during focused ion beam (FIB) milling of transmission electron microscopy (TEM) specimens can obfuscate subsequent TEM characterization, especially in the near-surface region of the TEM foil. Numerous strategies for minimizing this damage have been invoked, with the most common being the deposition of a Pt 'strap' at the area of interest. However, damage can still occur in the near-surface region during this Pt deposition step and the variation in the character and extent of this damage with applied Pt deposition parameter, especially in complex structural alloys, is not well characterized. In this study, the damage induced in an aerospace Al alloy (AA7075-T651) during five different Pt deposition protocols is examined using TEM. Results indicate significant variations in damage character and depth amongst the applied Pt deposition protocols, with damage being effectively eliminated using a combined electron-beam/ion-beam Pt deposition strategy. These experimental results are found to be in good agreement with Monte Carlo-based simulations of ion implantation and the implications of these findings on recent experiments in the fracture mechanics community are explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA