Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005410

RESUMO

Previous studies have shown that there are rhythms in gene expression in the mouse prefrontal cortex (PFC); however, the contribution of different cell types and potential variation by sex has not yet been determined. Of particular interest are excitatory pyramidal cells and inhibitory parvalbumin (PV) interneurons, as interactions between these cell types are essential for regulating the excitation/inhibition balance and controlling many of the cognitive functions regulated by the PFC. In this study, we identify cell-type specific rhythms in the translatome of PV and pyramidal cells in the mouse PFC and assess diurnal rhythms in PV cell electrophysiological properties. We find that while core molecular clock genes are conserved and synchronized between cell types, pyramidal cells have nearly twice as many rhythmic transcripts as PV cells (35% vs. 18%). Rhythmic transcripts in pyramidal cells also show a high degree of overlap between sexes, both in terms of which transcripts are rhythmic and in the biological processes associated with them. Conversely, in PV cells, rhythmic transcripts from males and females are largely distinct. Moreover, we find sex-specific effects of phase on action potential properties in PV cells that are eliminated by environmental circadian disruption. Together, this study demonstrates that rhythms in gene expression and electrophysiological properties in the mouse PFC vary by both cell type and sex. Moreover, the biological processes associated with these rhythmic transcripts may provide insight into the unique functions of rhythms in these cells, as well as their selective vulnerabilities to circadian disruption.

2.
Neuropsychopharmacology ; 49(5): 796-805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182777

RESUMO

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.


Assuntos
Corpo Estriado , Estriado Ventral , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Corpo Estriado/metabolismo , Núcleo Accumbens , Perfilação da Expressão Gênica , Transcriptoma
3.
Biol Psychiatry ; 92(1): 68-80, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461698

RESUMO

BACKGROUND: Substance use disorders are associated with disruptions in circadian rhythms. Both human and animal work have shown the integral role for circadian clocks in the modulation of reward behaviors. Astrocytes have emerged as key regulators of circadian rhythmicity. However, no studies to date have identified the role of circadian astrocyte function in the nucleus accumbens (NAc), a hub for reward regulation, or determined the importance of these rhythms for reward-related behavior. METHODS: Using astrocyte-specific RNA sequencing across time of day, we first characterized diurnal variation of the NAc astrocyte transcriptome. We then investigated the functional significance of this circadian regulation through viral-mediated disruption of molecular clock function in NAc astrocytes, followed by assessment of reward-related behaviors, metabolic-related molecular assays, and whole-cell electrophysiology in the NAc. RESULTS: Strikingly, approximately 43% of the astrocyte transcriptome has a diurnal rhythm, and key metabolic pathways were enriched among the top rhythmic genes. Moreover, mice with a viral-mediated loss of molecular clock function in NAc astrocytes show a significant increase in locomotor response to novelty, exploratory drive, operant food self-administration, and motivation. At the molecular level, these animals also show disrupted metabolic gene expression, along with significant downregulation of both lactate and glutathione levels in the NAc. Loss of NAc astrocyte clock function also significantly altered glutamatergic signaling onto neighboring medium spiny neurons, alongside upregulated glutamate-related gene expression. CONCLUSIONS: Taken together, these findings demonstrate a novel role for astrocyte circadian molecular clock function in the regulation of the NAc and reward-related behaviors.


Assuntos
Astrócitos , Núcleo Accumbens , Animais , Ritmo Circadiano/fisiologia , Camundongos , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Recompensa
4.
Aggress Behav ; 48(3): 290-297, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34706094

RESUMO

Olfactory input into the brain can be disrupted by a variety of environmental factors, including exposure to pathogens or environmental contaminants. Olfactory cues are often eliminated in laboratory rats and mice through highly invasive procedures like olfactory bulbectomy, which may also disrupt accessory olfactory pathways and detection of non-volatile odors. In the present study, we tested whether inducing anosmia through intranasal infusion of zinc gluconate alters aggression in a monogamous, biparental rodent species, the California mouse (Peromyscus californicus). This less invasive method of manipulating olfaction selectively targets the olfactory epithelium and reduces the detection of volatile odors. Treatment with zinc gluconate extended the time required for male and female California mice to find hidden pieces of apple and reduced the amount of time spent investigating bedding that was soiled by unfamiliar males. Moreover, inhibition of olfaction with zinc gluconate reduced aggressiveness in both sexes as demonstrated by an increased attack latency in the resident-intruder test among same-sex dyads from the same treatment group. These results suggest that volatile olfactory cues are necessary for agonistic responses in both male and female California mice. Therefore, even in species with complex social systems that include territorial aggression and monogamy, volatile olfactory cues modulate agonistic behavior.


Assuntos
Peromyscus , Olfato , Agressão/fisiologia , Animais , Feminino , Humanos , Masculino , Peromyscus/fisiologia , Ratos , Olfato/fisiologia
5.
Front Neurosci ; 15: 765850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126036

RESUMO

Individuals suffering from mood and anxiety disorders often show significant disturbances in sleep and circadian rhythms. Animal studies indicate that circadian rhythm disruption can cause increased depressive- and anxiety-like behavior, but the underlying mechanisms are unclear. One potential mechanism to explain how circadian rhythms are contributing to mood and anxiety disorders is through dysregulation of the suprachiasmatic nucleus (SCN) of the hypothalamus, known as the "central pacemaker." To investigate the role of the SCN in regulating depressive- and anxiety-like behavior in mice, we chronically manipulated the neural activity of the SCN using two optogenetic stimulation paradigms. As expected, chronic stimulation of the SCN late in the active phase (circadian time 21, CT21) resulted in a shortened period and dampened amplitude of homecage activity rhythms. We also repeatedly stimulated the SCN at unpredictable times during the active phase of mice when SCN firing rates are normally low. This resulted in dampened, fragmented, and unstable homecage activity rhythms. In both chronic SCN optogenetic stimulation paradigms, dampened homecage activity rhythms (decreased amplitude) were directly correlated with increased measures of anxiety-like behavior. In contrast, we only observed a correlation between behavioral despair and homecage activity amplitude in mice stimulated at CT21. Surprisingly, the change in period of homecage activity rhythms was not directly associated with anxiety- or depressive-like behavior. Finally, to determine if anxiety-like behavior is affected during a single SCN stimulation session, we acutely stimulated the SCN in the active phase (zeitgeber time 14-16, ZT14-16) during behavioral testing. Unexpectedly this also resulted in increased anxiety-like behavior. Taken together, these results indicate that SCN-mediated dampening of rhythms is directly correlated with increased anxiety-like behavior. This work is an important step in understanding how specific SCN neural activity disruptions affect depressive- and anxiety-related behavior.

6.
Semin Cell Dev Biol ; 61: 99-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381343

RESUMO

The genus Peromyscus has been used as a model system for understanding maternal behavior because of the diversity of reproductive strategies within this genus. This review will describe the ecological factors that determine litter size and litter quality in polygynous species such as Peromyscus leucopus and Peromyscus maniculatus. We will also outline the physiological and social factors regulating maternal care in Peromyscus californicus, a monogamous and biparental species. Because biparental care is relatively rare in mammals, most research in P. californicus has focused on understanding the biology of paternal care while less research has focused on understanding maternal care. As a result, the social, sensory, and hormonal cues used to coordinate parental care between male and female P. californicus have been relatively well-studied. However, less is known about the physiology of maternal care in P. californicus and in other Peromyscus species. The diversity of the genus Peromyscus provides the potential for future research to continue to examine how variation in social systems has shaped the mechanisms that underlie maternal care.


Assuntos
Comportamento Materno/fisiologia , Modelos Animais , Peromyscus/fisiologia , Animais , Ecossistema , Sistema Endócrino/metabolismo , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA