Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37547013

RESUMO

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (∼13 mm) than sparse fNIRS (∼30 mm) and therefore provide higher image quality, with spatial resolution ∼1/2 that of fMRI. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30-50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19-35% lower error than previous HD-DOT, throughout occipital cortex.

2.
Neuroimage ; 226: 117516, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137479

RESUMO

BACKGROUND: Neural decoding could be useful in many ways, from serving as a neuroscience research tool to providing a means of augmented communication for patients with neurological conditions. However, applications of decoding are currently constrained by the limitations of traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality. High-density diffuse optical tomography (HD-DOT) is an emerging modality that uses denser optode arrays than fNIRS to combine logistical advantages of optical neuroimaging with enhanced image quality. Despite the resulting promise of HD-DOT for facilitating field applications of neuroimaging, decoding of brain activity as measured by HD-DOT has yet to be evaluated. OBJECTIVE: To assess the feasibility and performance of decoding with HD-DOT in visual cortex. METHODS AND RESULTS: To establish the feasibility of decoding at the single-trial level with HD-DOT, a template matching strategy was used to decode visual stimulus position. A receiver operating characteristic (ROC) analysis was used to quantify the sensitivity, specificity, and reproducibility of binary visual decoding. Mean areas under the curve (AUCs) greater than 0.97 across 10 imaging sessions in a highly sampled participant were observed. ROC analyses of decoding across 5 participants established both reproducibility in multiple individuals and the feasibility of inter-individual decoding (mean AUCs > 0.7), although decoding performance varied between individuals. Phase-encoded checkerboard stimuli were used to assess more complex, non-binary decoding with HD-DOT. Across 3 highly sampled participants, the phase of a 60° wide checkerboard wedge rotating 10° per second through 360° was decoded with a within-participant error of 25.8±24.7°. Decoding between participants was also feasible based on permutation-based significance testing. CONCLUSIONS: Visual stimulus information can be decoded accurately, reproducibly, and across a range of detail (for both binary and non-binary outcomes) at the single-trial level (without needing to block-average test data) using HD-DOT data. These results lay the foundation for future studies of more complex decoding with HD-DOT and applications in clinical populations.


Assuntos
Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Óptica/métodos , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Hum Brain Mapp ; 41(14): 4093-4112, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648643

RESUMO

Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/normas , Movimentos da Cabeça , Processamento de Imagem Assistida por Computador/normas , Tomografia Óptica/normas , Acelerometria , Adulto , Idoso , Artefatos , Conectoma/normas , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho/normas , Adulto Jovem
4.
Neuroimage ; 215: 116541, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31987995

RESUMO

Behavioral and cognitive tests in individuals who were malnourished as children have revealed malnutrition-related deficits that persist throughout the lifespan. These findings have motivated recent neuroimaging investigations that use highly portable functional near-infrared spectroscopy (fNIRS) instruments to meet the demands of brain imaging experiments in low-resource environments and enable longitudinal investigations of brain function in the context of long-term malnutrition. However, recent studies in healthy subjects have demonstrated that high-density diffuse optical tomography (HD-DOT) can significantly improve image quality over that obtained with sparse fNIRS imaging arrays. In studies of both task activations and resting state functional connectivity, HD-DOT is beginning to approach the data quality of fMRI for superficial cortical regions. In this work, we developed a customized HD-DOT system for use in malnutrition studies in Cali, Colombia. Our results evaluate the performance of the HD-DOT instrument for assessing brain function in a cohort of malnourished children. In addition to demonstrating portability and wearability, we show the HD-DOT instrument's sensitivity to distributed brain responses using a sensory processing task and measurements of homotopic functional connectivity. Task-evoked responses to the passive word listening task produce activations localized to bilateral superior temporal gyrus, replicating previously published work using this paradigm. Evaluating this localization performance across sparse and dense reconstruction schemes indicates that greater localization consistency is associated with a dense array of overlapping optical measurements. These results provide a foundation for additional avenues of investigation, including identifying and characterizing a child's individual malnutrition burden and eventually contributing to intervention development.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos da Nutrição Infantil/diagnóstico por imagem , Neuroimagem/instrumentação , Neuroimagem/métodos , Tomografia Óptica/instrumentação , Tomografia Óptica/métodos , Encéfalo/fisiopatologia , Criança , Transtornos da Nutrição Infantil/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis
5.
Sci Rep ; 9(1): 11115, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366956

RESUMO

Naturalistic stimuli, such as movies, more closely recapitulate "real life" sensory processing and behavioral demands relative to paradigms that rely on highly distilled and repetitive stimulus presentations. The rich complexity inherent in naturalistic stimuli demands an imaging system capable of measuring spatially distributed brain responses, and analysis tools optimized for unmixing responses to concurrently presented features. In this work, the combination of passive movie viewing with high-density diffuse optical tomography (HD-DOT) is developed as a platform for naturalistic brain mapping. We imaged healthy young adults during free viewing of a feature film using HD-DOT and observed reproducible, synchronized cortical responses across a majority of the field-of-view, most prominently in hierarchical cortical areas related to visual and auditory processing, both within and between individuals. In order to more precisely interpret broad patterns of cortical synchronization, we extracted visual and auditory features from the movie stimulus and mapped the cortical responses to the features. The results demonstrate the sensitivity of HD-DOT to evoked responses during naturalistic viewing, and that feature-based decomposition strategies enable functional mapping of naturalistic stimulus processing, including human-generated speech.


Assuntos
Sincronização Cortical/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Filmes Cinematográficos , Estimulação Luminosa/métodos , Tomografia Óptica/métodos , Adulto Jovem
6.
Neurophotonics ; 5(3): 035006, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30137925

RESUMO

Though optical imaging of human brain function is gaining momentum, widespread adoption is restricted in part by a tradeoff among cap wearability, field of view, and resolution. To increase coverage while maintaining functional magnetic resonance imaging (fMRI)-comparable image quality, optical systems require more fibers. However, these modifications drastically reduce the wearability of the imaging cap. The primary obstacle to optimizing wearability is cap weight, which is largely determined by fiber diameter. Smaller fibers collect less light and lead to challenges in obtaining adequate signal-to-noise ratio. Here, we report on a design that leverages the exquisite sensitivity of scientific CMOS cameras to use fibers with ∼30× smaller cross-sectional area than current high-density diffuse optical tomography (HD-DOT) systems. This superpixel sCMOS DOT (SP-DOT) system uses 200-µm -diameter fibers that facilitate a lightweight, wearable cap. We developed a superpixel algorithm with pixel binning and electronic noise subtraction to provide high dynamic range ( >105 ), high frame rate ( >6 Hz ), and a low effective detectivity threshold ( ∼200 fW/Hz1/2-mm2 ), each comparable with previous HD-DOT systems. To assess system performance, we present retinotopic mapping of the visual cortex ( n=5 subjects). SP-DOT offers a practical solution to providing a wearable, large field-of-view, and high-resolution optical neuroimaging system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA