RESUMO
Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE: The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.
Assuntos
Rotavirus , Rotavirus/genética , Compartimentos de Replicação Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Microscopia Crioeletrônica , Replicação Viral/fisiologia , RNA , PeptídeosRESUMO
Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
Assuntos
Citoesqueleto de Actina , Proteínas do Capsídeo , Rotavirus , Citoesqueleto de Actina/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Lectinas , Genética Reversa , Rotavirus/genética , Rotavirus/fisiologia , Infecções por Rotavirus , Compartimentos de Replicação Viral , Replicação ViralRESUMO
RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.
Assuntos
Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Grânulos de Ribonucleoproteínas Citoplasmáticas/efeitos dos fármacos , Grânulos de Ribonucleoproteínas Citoplasmáticas/ultraestrutura , Grânulos de Ribonucleoproteínas Citoplasmáticas/virologia , Regulação Viral da Expressão Gênica , Genes Reporter , Glicóis/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Haplorrinos , Interações Hospedeiro-Patógeno/genética , Humanos , Concentração Osmolar , Fosforilação , Propilenoglicol/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/ultraestrutura , Transdução de Sinais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genéticaRESUMO
Rotaviruses (RVs) are considered to be one of the most common causes of viral gastroenteritis in young children and infants worldwide. Before recent developments, studies on rotavirus biology have suffered from the lack of an effective reverse genetics (RG) system to generate recombinant rotaviruses and study the precise roles of the viral proteins in the context of RV infection. Lately a fully-tractable plasmid-only based RG system for rescuing recombinant rotaviruses has been developed leading to a breakthrough in the RV field. Since then, the reproducibility and improvements of this technology have led to the generation of several recombinant rotaviruses with modifications on different gene segments, which has allowed the manipulation of viral genes to characterise the precise roles of viral proteins during RV replication cycle or to encode exogenous proteins for different purposes. This review will recapitulate the different RG approaches developed so far, highlighting any similarities, differences and limitations of the systems as well as the gene segments involved. The review will further summarise the latest recombinant rotaviruses generated using the plasmid-only based RG system showing the enormous potentials of this technique to shed light on the still unanswered questions in rotavirus biology.
Assuntos
Infecções por Rotavirus , Rotavirus , Vírus não Classificados , Biologia , Criança , Pré-Escolar , Vírus de DNA/genética , Humanos , Lactente , Reprodutibilidade dos Testes , Genética Reversa/métodos , Rotavirus/genética , Rotavirus/metabolismo , Proteínas Virais/genética , Replicação Viral/genética , Vírus não Classificados/genéticaRESUMO
Zika virus (ZIKV) envelope (E) protein is the major target of neutralizing antibodies in infected hosts and thus represents a candidate of interest for vaccine design. However, a major concern in the development of vaccines against ZIKV and the related dengue virus is the induction of cross-reactive poorly neutralizing antibodies that can cause antibody-dependent enhancement (ADE) of infection. This risk necessitates particular care in vaccine design. Specifically, the engineered immunogens should have their cross-reactive epitopes masked, and they should be optimized for eliciting virus-specific strongly neutralizing antibodies upon vaccination. Here, we developed ZIKV subunit- and virus-like particle (VLP)-based vaccines displaying E in its wild-type form or E locked in a covalently linked dimeric (cvD) conformation to enhance the exposure of E dimers to the immune system. Compared with their wild-type derivatives, cvD immunogens elicited antibodies with a higher capacity to neutralize virus infection in cultured cells. More importantly, these immunogens protected animals from lethal challenge with both the African and Asian lineages of ZIKV, impairing virus dissemination to brain and sexual organs. Moreover, the locked conformation of E reduced the exposure of epitopes recognized by cross-reactive antibodies and therefore showed a lower potential to induce ADE in vitro Our data demonstrated a higher efficacy of the VLPs in comparison with that of the soluble dimer and support VLP-cvD as a promising ZIKV vaccine.IMPORTANCE Infection with Zika virus (ZIKV) leads to the production by the host of antibodies that target the viral surface envelope (E) protein. A subset of these antibodies can inhibit virus infection, thus making E a suitable candidate for the development of vaccine against the virus. However, the anti-ZIKV E antibodies can cross-react with the E protein of the related dengue virus on account of the high level of similarity exhibited by the two viral proteins. Such a scenario may lead to severe dengue disease. Therefore, the design of a ZIKV vaccine requires particular care. Here, we tested two candidate vaccines containing a recombinant form of the ZIKV E protein that is forced in a covalently stable dimeric conformation (cvD). They were generated with an explicit aim to reduce the exposure of the cross-reactive epitopes. One vaccine is composed of a soluble form of the E protein (sE-cvD), the other is a more complex virus-like particle (VLP-cvD). We used the two candidate vaccines to immunize mice and later infected them with ZIKV. The animals produced a high level of inhibitory antibodies and were protected from the infection. The VLP-cvD was the most effective, and we believe it represents a promising ZIKV vaccine candidate.
Assuntos
Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Proteção Cruzada , Camundongos , Conformação Proteica , Multimerização Proteica , Vacinação , Proteínas do Envelope Viral/química , Zika virus/classificaçãoRESUMO
CRISPR-nucleases have been widely applied for editing cellular and viral genomes, but nuclease-mediated genome editing of double-stranded RNA (dsRNA) viruses has not yet been reported. Here, by engineering CRISPR-Csy4 nuclease to localize to rotavirus viral factories, we achieve the nuclease-mediated genome editing of rotavirus, an important human and livestock pathogen with a multisegmented dsRNA genome. Rotavirus replication intermediates cleaved by Csy4 is edited through the formation of precise deletions in the targeted genome segments in a single replication cycle. Using CRISPR-Csy4-mediated editing of rotavirus genome, we label the products of rotavirus secondary transcription made by newly assembled viral particles during rotavirus replication, demonstrating that this step largely contributes to the overall production of viral proteins. We anticipate that the nuclease-mediated cleavage of dsRNA virus genomes will promote an advanced level of understanding of viral replication and host-pathogen interactions, also offering opportunities to develop therapeutics.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Genoma Viral/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Rotavirus/patogenicidade , HumanosRESUMO
The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.
RESUMO
Dengue virus (DENV) remains a significant healthcare and socioeconomic burden for endemic countries. Attempts to produce a safe and effective vaccine have been unsuccessful so far, making this task one of the top priorities in the field. We have previously shown that an EDIII-based DNA vaccine is able to induce neutralizing, long-lasting and highly specific antibody responses for all four DENV serotypes in mice using gene-gun delivery technology. Here, we describe the use of recombinant Adeno-associated viral vectors as an alternative DNA delivery platform, in combination with different immunization schedules, to simplify the vaccination protocol without compromising the induction of neutralizing antibody responses. Our results demonstrate that using viral vectored-platforms to deliver genetic vaccines could potentially reduce the number of doses required to induce a sustained DENV-neutralizing response, thus facilitating the implementation and deployment of the vaccine in developing countries.
Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dependovirus/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Dengue/imunologia , Dengue/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Sorogrupo , Vacinação/métodos , Proteínas do Envelope Viral/imunologiaRESUMO
Proteolytic processing of flavivirus polyprotein is a uniquely controlled process. To date, the sequential cleavage of the capsid anchor sequence at the junction of C-PrM has been considered essential for the production of flaviviruses. In this study, we used two experimental approaches to show the effect of unprocessed capsid on the production and infectivity of dengue virus 2 (DENV2) pseudoviral particles. The results showed that (1) both mature and unprocessed capsids of DENV2 were equally efficient in the viral RNA packaging and also in the assembly of infective particles; (2) DENV2 variants, in which the viral and host mediated cleavage of Ca peptide were independent, produced significantly higher levels of infective particles. Overall, this study demonstrated that unlike other flaviviruses, DENV2 capsid does not require a cleavable Ca sequence, and the sequential cleavage is not an obligatory requirement for the morphogenesis of infective pseudoviral particles.
Assuntos
Proteínas do Capsídeo/química , Vírus da Dengue/fisiologia , Clivagem do RNA , Montagem de Vírus , Vírus da Dengue/classificação , Células HEK293 , Humanos , RNA Viral/genéticaRESUMO
The assembly and secretion of flaviviruses are part of an elegantly regulated process. During maturation, the viral polyprotein undergoes several co- and post-translational cleavages mediated by both viral and host proteases. Among these, sequential cleavage at the N and C termini of the hydrophobic capsid anchor (Ca) is crucial in deciding the fate of viral infection. Here, using a refined dengue pseudovirus production system, along with cleavage and furin inhibition assays, immunoblotting and secondary structure prediction analysis, we show that Ca plays a key role in the processing efficiency of dengue virus type 2 (DENV2) structural proteins and viral particle assembly. Replacement of the DENV2 Ca with the homologous regions from West nile or Zika viruses or, alternatively, increasing its length, improved cleavage and hence particle assembly. Further, we showed that substitution of the Ca conserved proline residue (P110) to alanine abolishes pseudovirus production, regardless of the Ca sequence length. Besides providing the results of a biochemical analysis of DENV2 structural polyprotein processing, this study also presents a system for efficient production of dengue pseudoviruses.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Vírus da Dengue/fisiologia , Dengue/virologia , Montagem de Vírus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Linhagem Celular , Vírus da Dengue/classificação , Humanos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteólise , Replicação Viral , Zika virus/fisiologiaRESUMO
Rotavirus (RV) replicates in round-shaped cytoplasmic viral factories, although how they assemble remains unknown. During RV infection, NSP5 undergoes hyperphosphorylation, which is primed by the phosphorylation of a single serine residue. The role of this posttranslational modification in the formation of viroplasms and its impact on virus replication remain obscure. Here, we investigated the role of NSP5 during RV infection by taking advantage of a modified fully tractable reverse-genetics system. A trans-complementing cell line stably producing NSP5 was used to generate and characterize several recombinant rotaviruses (rRVs) with mutations in NSP5. We demonstrate that an rRV lacking NSP5 was completely unable to assemble viroplasms and to replicate, confirming its pivotal role in rotavirus replication. A number of mutants with impaired NSP5 phosphorylation were generated to further interrogate the function of this posttranslational modification in the assembly of replication-competent viroplasms. We showed that the rRV mutant strains exhibited impaired viral replication and the ability to assemble round-shaped viroplasms in MA104 cells. Furthermore, we investigated the mechanism of NSP5 hyperphosphorylation during RV infection using NSP5 phosphorylation-negative rRV strains, as well as MA104-derived stable transfectant cell lines expressing either wild-type NSP5 or selected NSP5 deletion mutants. Our results indicate that NSP5 hyperphosphorylation is a crucial step for the assembly of round-shaped viroplasms, highlighting the key role of the C-terminal tail of NSP5 in the formation of replication-competent viral factories. Such a complex NSP5 phosphorylation cascade may serve as a paradigm for the assembly of functional viral factories in other RNA viruses.IMPORTANCE The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms.
Assuntos
Genética Reversa/métodos , Rotavirus/genética , Rotavirus/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Citoplasma/virologia , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Mutação , Organelas , Fosforilação , RNA Viral/isolamento & purificação , Infecções por Rotavirus/virologia , Deleção de Sequência , Transfecção , Proteínas não Estruturais Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação ViralRESUMO
Cellular and viral factors participate in the replication cycle of rotavirus. We report that the guanine nucleotide exchange factor GBF1, which activates the small GTPase Arf1 to induce COPI transport processes, is required for rotavirus replication since knocking down GBF1 expression by RNA interference or inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. This reduction in virus yield was related to a block in virus assembly, since in the presence of either BFA or GCA, the assembly of infectious mature triple-layered virions was significantly prevented and only double-layered particles were detected. We report that the catalytic activity of GBF1, but not the activation of Arf1, is essential for the assembly of the outer capsid of rotavirus. We show that both BFA and GCA, as well as interfering with the synthesis of GBF1, alter the electrophoretic mobility of glycoproteins VP7 and NSP4 and block the trimerization of the virus surface protein VP7, a step required for its incorporation into virus particles. Although a posttranslational modification of VP7 (other than glycosylation) could be related to the lack of trimerization, we found that NSP4 might also be involved in this process, since knocking down its expression reduces VP7 trimerization. In support, recombinant VP7 protein overexpressed in transfected cells formed trimers only when cotransfected with NSP4.IMPORTANCE Rotavirus, a member of the family Reoviridae, is the major cause of severe diarrhea in children and young animals worldwide. Despite significant advances in the characterization of the biology of this virus, the mechanisms involved in morphogenesis of the virus particle are still poorly understood. In this work, we show that the guanine nucleotide exchange factor GBF1, relevant for COPI/Arf1-mediated cellular vesicular transport, participates in the replication cycle of the virus, influencing the correct processing of viral glycoproteins VP7 and NSP4 and the assembly of the virus surface proteins VP7 and VP4.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Patógeno , Rotavirus/crescimento & desenvolvimento , Montagem de Vírus , Replicação Viral , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Macaca mulatta , Carga Viral , Proteínas Virais/metabolismoRESUMO
Translational stalling of ribosome bound to endoplasmic reticulum (ER) membrane requires an accurate clearance of the associated polypeptides, which is not completely understood in mammals. We characterized in mammalian cells the model of ribosomal stalling at the STOP-codon based on proteins tagged at the C-terminus with the picornavirus 2A peptide followed by a termination codon instead of the Proline (2A*). We exploited the 2A* stalling model to characterize the pathway of degradation of ER-targeted polypeptides. We report that the ER chaperone BiP/GRP78 is a new main factor involved. Moreover, degradation of the ER-stalled polypeptides required the activities of the AAA-ATPase VCP/p97, its associated deubiquitinylase YOD1, the ribosome-associated ubiquitin ligase Listerin and the proteasome. In human proteome, we found two human C-terminal amino acid sequences that cause similar stalling at the STOP-codon. Our data suggest that translational stalling at the ER membrane activates protein degradation at the interface of ribosomal- and ER-associated quality control systems.
Assuntos
Códon de Terminação/genética , Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Ribossomos/genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos/genética , Animais , Linhagem Celular , Endopeptidases/genética , Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Mamíferos/genética , Chaperonas Moleculares , Proteínas Nucleares/genética , Peptídeos/genética , Prolina/genética , Complexo de Endopeptidases do Proteassoma/genética , Biossíntese de Proteínas/genética , Proteólise , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
The method of delivery of CRISPR-Cas9 into target cells is a strong determinant of efficacy and specificity in genome editing. Even though high efficiency of Cas9 delivery is necessary for optimal editing, its long-term and high levels of expression correlate with increased off-target activity. We developed vesicles (VEsiCas) carrying CRISPR-SpCas9 ribonucleoprotein complexes (RNPs) that are efficiently delivered into target cells through the fusogenic glycoprotein of the vesicular stomatitis virus (VSV-G). A crucial step for VEsiCas production is the synthesis of the single guide RNA (sgRNA) mediated by the T7 RNA polymerase in the cytoplasm of producing cells as opposed to canonical U6-driven Pol III nuclear transcription. In VEsiCas, the absence of DNA encoding SpCas9 and sgRNA allows rapid clearance of the nuclease components in target cells, which correlates with reduced genome-wide off-target cleavages. Compared with SpCas9 RNPs electroporation, which is currently the method of choice to obtain transient SpCas9 activity, VEsiCas deliver the nuclease with higher efficiency and lower toxicity. We show that a wide variety of cells can be edited through VEsiCas, including a variety of transformed cells, induced pluripotent stem cells (iPSCs), and cardiomyocytes, in vivo. VEsiCas is a traceless CRISPR-Cas9 delivery tool for efficient and safe genome editing that represents a further advancement toward the therapeutic use of the CRISPR-Cas9 technology.
RESUMO
A safe and highly efficient antiviral is needed for the prophylaxis and/or treatment of viral diarrhea. We here demonstrate the in vitro antiviral activity of four 2'-C-methyl nucleoside analogues against noro-, rota-, and sapoviruses. The most potent nucleoside analogue, 7-deaza-2'-C-methyladenosine, inhibits replication of these viruses with a 50% effective concentration < 5 µM. Mechanistically, we demonstrate that the 2'-C-methyl nucleoside analogues act by inhibiting transcription of the rotavirus genome. This provides the first evidence that a single viral-diarrhea-targeted treatment can be developed through a viral-polymerase-targeting small molecule.
Assuntos
Antivirais/farmacologia , Diarreia/virologia , Nucleosídeos/farmacologia , Vírus de RNA , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Infecções por Vírus de RNA/virologia , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/enzimologia , Proteínas Virais/antagonistas & inibidoresRESUMO
The flavivirus capsid protein (C) is separated from the downstream premembrane (PrM) protein by a hydrophobic sequence named capsid anchor (Ca). During polyprotein processing, Ca is sequentially cleaved by the viral NS2B/NS3 protease on the cytosolic side and by signal peptidase on the luminal side of the endoplasmic reticulum (ER). To date, Ca is considered important mostly for directing translocation of PrM into the ER lumen. In this study, the role of Ca in the assembly and secretion of Zika virus was investigated using a pseudovirus-based approach. Our results show that, while Ca-mediated anchoring of C to the ER membrane is not needed for the production of infective particles, Ca expression in cis with respect to PrM is strictly required to allow proper assembly of infectious particles. Finally, we show that the presence of heterologous, but not homologous, Ca induces degradation of E through the autophagy/lysosomal pathway.IMPORTANCE The capsid anchor (Ca) is a single-pass transmembrane domain at the C terminus of the capsid protein (C) known to function as a signal for the translocation of PrM into the ER lumen. The objective of this study was to further examine the role of Ca in Zika virus life cycle, whether involved in the formation of nucleocapsid through association with C or in the formation of viral envelope. In this study, we show that Ca has a function beyond the one of translocation signal, controlling protein E stability and therefore its availability for assembly of infectious particles.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/fisiologia , Morfogênese , Precursores de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Citosol/metabolismo , Citosol/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Células HEK293 , Humanos , Precursores de Proteínas/genética , Homologia de Sequência , Células Vero , Proteínas do Envelope Viral/genética , Montagem de Vírus , Infecção por Zika virus/metabolismoRESUMO
Despite the availability of two attenuated vaccines, rotavirus (RV) gastroenteritis remains an important cause of mortality among children in developing countries, causing about 215,000 infant deaths annually. Currently, there are no specific antiviral therapies available. RV is a nonenveloped virus with a segmented double-stranded RNA genome. Viral genome replication and assembly of transcriptionally active double-layered particles (DLPs) take place in cytoplasmic viral structures called viroplasms. In this study, we describe strong impairment of the early stages of RV replication induced by a small molecule known as an RNA polymerase III inhibitor, ML-60218 (ML). This compound was found to disrupt already assembled viroplasms and to hamper the formation of new ones without the need for de novo transcription of cellular RNAs. This phenotype was correlated with a reduction in accumulated viral proteins and newly made viral genome segments, disappearance of the hyperphosphorylated isoforms of the viroplasm-resident protein NSP5, and inhibition of infectious progeny virus production. In in vitro transcription assays with purified DLPs, ML showed dose-dependent inhibitory activity, indicating the viral nature of its target. ML was found to interfere with the formation of higher-order structures of VP6, the protein forming the DLP outer layer, without compromising its ability to trimerize. Electron microscopy of ML-treated DLPs showed dose-dependent structural damage. Our data suggest that interactions between VP6 trimers are essential, not only for DLP stability, but also for the structural integrity of viroplasms in infected cells.IMPORTANCE Rotavirus gastroenteritis is responsible for a large number of infant deaths in developing countries. Unfortunately, in the countries where effective vaccines are urgently needed, the efficacy of the available vaccines is particularly low. Therefore, the development of antivirals is an important goal, as they might complement the available vaccines or represent an alternative option. Moreover, they may be decisive in fighting the acute phase of infection. This work describes the inhibitory effect on rotavirus replication of a small molecule initially reported as an RNA polymerase III inhibitor. The molecule is the first chemical compound identified that is able to disrupt viroplasms, the viral replication machinery, and to compromise the stability of DLPs by targeting the viral protein VP6. This molecule thus represents a starting point in the development of more potent and less cytotoxic compounds against rotavirus infection.
Assuntos
RNA Polimerase III/antagonistas & inibidores , Rotavirus/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Estruturas Virais/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Rotavirus/química , Rotavirus/efeitos dos fármacos , Células Sf9 , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacosRESUMO
Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.
Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Imunização/métodos , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Feminino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5'UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5'UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3'UTR sequences. Analysis of several mutants of the 21-nucleotide long 5'UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5' terminal 6-nucleotide long pyrimidine-rich tract 5'-GGY(U/A)UY-3'. The 5' terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5'UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies.
Assuntos
Genoma Viral , RNA de Cadeia Dupla/genética , Rotavirus/genética , Proteínas Virais/biossíntese , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas/genética , Processamento Alternativo , DNA Complementar/biossíntese , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação Viral da Expressão Gênica , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Proteínas Virais/genéticaRESUMO
About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.