Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 42(14): 9249-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063294

RESUMO

Binding and hydrolysis of ATP is universally required by AAA+ proteins to underpin their mechano-chemical work. Here we explore the roles of the ATPase site in an AAA+ transcriptional activator protein, the phage shock protein F (PspF), by specifically altering the Walker B motif sequence required in catalyzing ATP hydrolysis. One such mutant, the E108Q variant, is defective in ATP hydrolysis but fully remodels target transcription complexes, the RNAP-σ(54) holoenzyme, in an ATP dependent manner. Structural analysis of the E108Q variant reveals that unlike wild-type protein, which has distinct conformations for E108 residue in the ATP and ADP bound forms, E108Q adapts the same conformation irrespective of nucleotide bound. Our data show that the remodeling activities of E108Q are strongly favored on pre-melted DNA and engagement with RNAP-σ(54) using ATP binding can be sufficient to convert the inactive holoenzyme to an active form, while hydrolysis per se is required for nucleic acid remodeling that leads to transcription bubble formation. Furthermore, using linked dimer constructs, we show that RNAP-σ(54) engagement by adjacent subunits within a hexamer are required for this protein remodeling activity while DNA remodeling activity can tolerate defective ATP hydrolysis of alternating subunits.


Assuntos
Proteínas de Escherichia coli/química , Transativadores/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/química , Modelos Moleculares , Mutação , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
2.
Nucleic Acids Res ; 42(8): 5177-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553251

RESUMO

Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase Sigma 54/química , Transcrição Gênica , Domínio Catalítico , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , Corantes Fluorescentes , Nucleotídeos/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/metabolismo , Moldes Genéticos
3.
Nucleic Acids Res ; 40(21): 10878-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965125

RESUMO

Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Elementos Facilitadores Genéticos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação da Transcrição Genética , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Holoenzimas/metabolismo , Hidrólise , Lactonas/farmacologia , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase Sigma 54/genética , Proteínas Repressoras/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética/efeitos dos fármacos
4.
J Biol Chem ; 286(16): 14469-79, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21357417

RESUMO

Transcription, the synthesis of RNA from a DNA template, is performed by multisubunit RNA polymerases (RNAPs) in all cellular organisms. The bridge helix (BH) is a distinct feature of all multisubunit RNAPs and makes direct interactions with several active site-associated mobile features implicated in the nucleotide addition cycle and RNA and DNA binding. Because the BH has been captured in both kinked and straight conformations in different crystals structures of RNAP, recently supported by molecular dynamics studies, it has been proposed that cycling between these conformations is an integral part of the nucleotide addition cycle. To further evaluate the role of the BH, we conducted systematic alanine scanning mutagenesis of the Escherichia coli RNAP BH to determine its contributions to activities required for transcription. Combining our data with an atomic model of E. coli RNAP, we suggest that alterations in the interactions between the BH and (i) the trigger loop, (ii) fork loop 2, and (iii) switch 2 can help explain the observed changes in RNAP functionality associated with some of the BH variants. Additionally, we show that extensive defects in E. coli RNAP functionality depend upon a single previously not studied lysine residue (Lys-781) that is strictly conserved in all bacteria. It appears that direct interactions made by the BH with other conserved features of RNAP are lost in some of the E. coli alanine substitution variants, which we infer results in conformational changes in RNAP that modify RNAP functionality.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Alanina/química , Sequência de Aminoácidos , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Teste de Complementação Genética , Lisina/química , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Sinorhizobium meliloti/genética
5.
Nat Commun ; 2: 177, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21285955

RESUMO

The bacterial AAA+ enhancer-binding proteins (EBPs) HrpR and HrpS (HrpRS) of Pseudomonas syringae (Ps) activate σ(54)-dependent transcription at the hrpL promoter; triggering type-three secretion system-mediated pathogenicity. In contrast with singly acting EBPs, the evolution of the strictly co-operative HrpRS pair raises questions of potential benefits and mechanistic differences this transcription control system offers. Here, we show distinct properties of HrpR and HrpS variants, indicating functional specialization of these non-redundant, tandemly arranged paralogues. Activities of HrpR, HrpS and their control proteins HrpV and HrpG from Ps pv. tomato DC3000 in vitro establish that HrpRS forms a transcriptionally active hetero-hexamer, that there is a direct negative regulatory role for HrpV through specific binding to HrpS and that HrpG suppresses HrpV. The distinct HrpR and HrpS functionalities suggest how partial paralogue degeneration has potentially led to a novel control mechanism for EBPs and indicate subunit-specific roles for EBPs in σ(54)-RNA polymerase activation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Regulação da Expressão Gênica/genética , Complexos Multiproteicos/metabolismo , Pseudomonas syringae/química , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/metabolismo , Western Blotting , Cromatografia em Gel , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/fisiologia , Plasmídeos/genética , RNA Polimerase Sigma 54/metabolismo , Fator sigma/metabolismo , Transdução Genética , beta-Galactosidase
6.
Microbiology (Reading) ; 156(Pt 10): 2920-2932, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20595257

RESUMO

The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ(54)-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF-A-C-B-ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein-protein interactions, resulting in the release of the PspA-PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Zíper de Leucina , Proteínas de Membrana/genética
7.
Proc Natl Acad Sci U S A ; 107(20): 9376-81, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439713

RESUMO

ATP hydrolysis-dependent molecular machines and motors often drive regulated conformational transformations in cell signaling and gene regulation complexes. Conformational reorganization of a gene regulation complex containing the major variant form of bacterial RNA polymerase (RNAP), Esigma(54), requires engagement with its cognate ATP-hydrolyzing activator protein. Importantly, this activated RNAP is essential for a number of adaptive responses, including those required for bacterial pathogenesis. Here we characterize the initial encounter between the enhancer-dependent Esigma(54) and its cognate activator AAA+ ATPase protein, before ADP+P(i) formation, using a small primed RNA (spRNA) synthesis assay. The results show that in a prehydrolysis state, sufficient activator-dependent rearrangements in Esigma(54) have occurred to allow engagement of the RNAP active site with single-stranded promoter DNA to support spRNA synthesis, but not to melt the promoter DNA. This catalytically competent transcription intermediate has similarity with the open promoter complex, in that the RNAP dynamics required for DNA scrunching should be occurring. Significantly, this work highlights that prehydrolysis states of ATPases are functionally important in the molecular transformations they drive.


Assuntos
Escherichia coli/metabolismo , RNA Polimerase Sigma 54/metabolismo , Transativadores/metabolismo , Ativação Transcricional/fisiologia , Cromatografia em Camada Fina , Ensaio de Desvio de Mobilidade Eletroforética , Hidrólise , Desnaturação de Ácido Nucleico
8.
J Mol Biol ; 394(4): 764-75, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19804784

RESUMO

To survive and colonise their various environments, including those used during infection, bacteria have developed a variety of adaptive systems. Amongst these is phage shock protein (Psp) response, which can be induced in Escherichia coli upon filamentous phage infection (specifically phage secretin pIV) and by other membrane-damaging agents. The E. coli Psp system comprises seven proteins, of which PspA is the central component. PspA is a bifunctional protein that is directly involved in (i) the negative regulation of the psp-specific transcriptional activator PspF and (ii) the maintenance of membrane integrity in a mechanism proposed to involve the formation of a 36-mer ring complex. Here we established that the PspA negative regulation of PspF ATPase activity is the result of a cooperative inhibition. We present biochemical evidence showing that an inhibitory PspA-PspF regulatory complex, which has significantly reduced PspF ATPase activity, is composed of around six PspF subunits and six PspA subunits, suggesting that PspA exists in at least two different oligomeric assemblies. We now establish that all four putative helical domains of PspA are critical for the formation of the 36-mer. In contrast, not all four helical domains are required for the formation of the inhibitory PspA-PspF complex. Since a range of initial PspF oligomeric states permit formation of the apparent PspA-PspF dodecameric assembly, we conclude that PspA and PspF demonstrate a strong propensity to self-assemble into a single defined heteromeric regulatory complex.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Transativadores/metabolismo , Regulação para Baixo , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
9.
Nucleic Acids Res ; 37(18): 5981-92, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692583

RESUMO

sigma(54)-dependent transcription requires activation by bacterial enhancer binding proteins (bEBPs). bEBPs are members of the AAA+ (ATPases associated with various cellular activities) protein family and typically form hexameric structures that are crucial for their ATPase activity. The precise mechanism by which the energy derived from ATP hydrolysis is coupled to biological output has several unknowns. Here we use Escherichia coli PspF, a model bEBP involved in the transcription of stress response genes (psp operon), to study determinants of its contact features with the closed promoter complex. We demonstrate that substitution of a highly conserved phenylalanine (F85) residue within the L1 loop GAFTGA motif affects (i) the ATP hydrolysis rate of PspF, demonstrating the link between L1 and the nucleotide binding pocket; (ii) the internal organization of the hexameric ring; and (iii) sigma(54) interactions. Importantly, we provide evidence for a close relationship between F85 and the -12 DNA fork junction structure, which may contribute to key interactions during the energy coupling step and the subsequent remodelling of the Esigma(54) closed complex. The functionality of F85 is distinct from that of other GAFTGA residues, especially T86 where in contrast to F85 a clean uncoupling phenotype is observed.


Assuntos
Proteínas de Escherichia coli/química , Fenilalanina/química , Transativadores/química , Ativação Transcricional , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , DNA Bacteriano/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
Nucleic Acids Res ; 37(15): 5138-50, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19553192

RESUMO

Bacterial RNA polymerase (RNAP) containing the major variant sigma(54) factor forms open promoter complexes in a reaction in which specialized activator proteins hydrolyse ATP. Here we probe binding interactions between sigma(54)-RNAP (Esigma(54)) and the ATPases associated with various cellular activities (AAA+) domain of the Escherichia coli activator protein, PspF, using nucleotide-metal fluoride (BeF and AlF) analogues representing ground and transition states of ATP, which allow complexes (that are otherwise too transient with ATP) to be captured. We show that the organization and functionality of the ADP-BeF- and ADP-AlF-dependent complexes greatly overlap. Our data support an activation pathway in which the initial ATP-dependent binding of the activator to the Esigma(54) closed complex results in the re-organization of Esigma(54) with respect to the transcription start-site. However, the nucleotide-dependent binding interactions between the activator and the Esigma(54) closed complex are in themselves insufficient for forming open promoter complexes when linear double-stranded DNA is present in the initial closed complex.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Proteínas de Escherichia coli/química , RNA Polimerase Sigma 54/química , Transativadores/química , Compostos de Alumínio/química , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fluoretos/química , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase Sigma 54/metabolismo , Transativadores/metabolismo , Transcrição Gênica
11.
Mol Microbiol ; 73(4): 519-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19486295

RESUMO

Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial sigma(54)-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein-DNA proximity assay to measure the contribution of the pre-SIi loop in sigma(54)-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Esigma(54). We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Mutagênese Insercional , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Hidrólise , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/metabolismo , Transativadores/genética , Ativação Transcricional
12.
J Mol Biol ; 387(2): 306-19, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19356588

RESUMO

ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.


Assuntos
Desnaturação de Ácido Nucleico , RNA Polimerase Sigma 54/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sequência de Bases , DNA Bacteriano/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Hidrólise , Klebsiella pneumoniae , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54/genética , Transativadores/metabolismo , Transcrição Gênica
13.
Mol Cell ; 32(3): 337-46, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18995832

RESUMO

Transcription initiation involves the conversion from closed promoter complexes, comprising RNA polymerase (RNAP) and double-stranded promoter DNA, to open complexes, in which the enzyme is able to access the DNA template in a single-stranded form. The complex between bacterial RNAP and its major variant sigma factor sigma(54) remains as a closed complex until ATP hydrolysis-dependent remodeling by activator proteins occurs. This remodeling facilitates DNA melting and allows the transition to the open complex. Here we present cryoelectron microscopy reconstructions of bacterial RNAP in complex with sigma(54) alone, and of RNAP-sigma(54) with an AAA+ activator. Together with photo-crosslinking data that establish the location of promoter DNA within the complexes, we explain why the RNAP-sigma(54) closed complex is unable to access the DNA template and propose how the structural changes induced by activator binding can initiate conformational changes that ultimately result in formation of the open complex.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ativação Enzimática , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Moldes Genéticos
14.
Biochem Soc Trans ; 36(Pt 4): 776-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18631157

RESUMO

Regulated gene expression requires control of the transcription machinery, frequently through the establishment of different functional states of the transcribing enzyme RNA polymerase and its attendant activator proteins. In bacteria, major adaptive responses use an enhancer-dependent RNA polymerase, activated for transcription by a class of ATPases that remodel initial promoter complexes to form transcriptionally proficient open promoter complexes. In the present article, we summarize the integrated use of site-specific protein cleavage and DNA cross-linking methods, as well as FRET (fluorescence resonance energy transfer) in combination with X-ray crystallography and cryo-electron microscopy to gain insight into the organization of the enhancer-dependent sigma 54-RNA polymerase and the ATPase-driven activation mechanism.


Assuntos
Regulação da Expressão Gênica/genética , Transcrição Gênica/genética , DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética
15.
J Biol Chem ; 283(20): 13725-35, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18326037

RESUMO

AAA+ proteins (ATPases associated with various cellular activities) contribute to many cellular processes and typically function as higher order oligomers permitting the coordination of nucleotide hydrolysis for functional output, which leads to substrate remodeling. The precise mechanisms that enable the relay of nucleotide hydrolysis to their specific functional outputs are largely unknown. Here we use PspF, a specialized AAA+ protein required for enhancer-dependent transcription activation in Escherichia coli, as a model system to address this question. We demonstrate that a conserved asparagine is involved in internal organization of the oligomeric ring, regulation of ATPase activity by "trans" factors, and optimizing substrate remodeling. We provide evidence that the spatial relationship between the asparagine residue and the Walker B motif is one key element in the conformational signaling pathway that leads to substrate remodeling. Such functional organization most likely applies to other AAA+ proteins, including Ltag (simian virus 40), Rep40 (Adeno-associated virus-2), and p97 (Mus musculus) in which the asparagine to Walker B motif relationship is conserved.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Transativadores/química , Ativação Transcricional , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transativadores/metabolismo , beta-Galactosidase/metabolismo
16.
Mol Microbiol ; 68(3): 538-46, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18331472

RESUMO

Bacterial sigma (sigma) factors confer gene specificity upon the RNA polymerase, the central enzyme that catalyses gene transcription. The binding of the alternative sigma factor sigma(54) confers upon the RNA polymerase special functional and regulatory properties, making it suited for control of several major adaptive responses. Here, we summarize our current understanding of the interactions the sigma(54) factor makes with the bacterial transcription machinery.


Assuntos
Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase Sigma 54/química , Transcrição Gênica , Bactérias/enzimologia , Bactérias/genética , RNA Polimerase Sigma 54/metabolismo , RNA Bacteriano/genética
17.
J Mol Biol ; 375(1): 43-58, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18005983

RESUMO

Transcriptional control at the promoter melting step is not yet well understood. In this study, a site-directed photo-cross-linking method was used to systematically analyse component protein-DNA interactions that govern promoter melting by the enhancer-dependent Escherichia coli RNA polymerase (RNAP) containing the sigma(54) promoter specificity factor (E sigma(54)) at a single base pair resolution in three functional states. The sigma(54)-factor imposes tight control upon the RNAP by creating a regulatory switch where promoter melting nucleates, approximately 12 bp upstream of the transcription start site. Promoter melting by E sigma(54) is only triggered upon remodelling of this regulatory switch by a specialised activator protein in an ATP-hydrolysing reaction. We demonstrate that prior to DNA melting, only the sigma(54)-factor directly interacts with the promoter in the regulatory switch within the initial closed E sigma(54)-promoter complex and one intermediate E sigma(54)-promoter complex. We establish that activator-induced conformational rearrangements in the regulatory switch are a prerequisite to allow the promoter to enter the catalytic cleft of the RNAP and hence establish the transcriptionally competent open complex, where full promoter melting occurs. These results significantly advance our current understanding of the structural transitions occurring at bacterial promoters, where regulation occurs at the DNA melting step.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Sequência de Bases , Reagentes de Ligações Cruzadas/farmacologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli , Holoenzimas , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Ácidos Nucleicos Heteroduplexes , Regiões Promotoras Genéticas , Desnaturação Proteica , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Raios Ultravioleta
18.
J Biol Chem ; 280(43): 36176-84, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16123036

RESUMO

DNA opening for transcription-competent open promoter complex (OC) formation by the bacterial RNA polymerase (RNAP) relies upon a complex network of interactions between the structurally conserved and flexible modules of the catalytic beta and beta'-subunits, RNAP-associated sigma-subunit, and the DNA. Here, we show that one such module, the beta'-jaw, functions to stabilize the OC. In OCs formed by the major sigma70-RNAP, the stabilizing role of the beta'-jaw is not restricted to any particular melted DNA segment. In contrast, in OCs formed by the major variant sigma54-RNAP, the beta'-jaw and a conserved sigma54 regulatory domain co-operate to stabilize the melted DNA segment immediately upstream of the transcription start site. Clearly, regulated communication between the mobile modules of the RNAP and the functional domain(s) of the sigma subunit is required for stable DNA opening.


Assuntos
RNA Polimerases Dirigidas por DNA/química , DNA/química , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Thermus/enzimologia , Bacteriófago T7/metabolismo , Sítios de Ligação , Reagentes de Ligações Cruzadas/farmacologia , DNA Bacteriano/genética , Desoxirribonuclease I/metabolismo , Escherichia coli/enzimologia , Heparina/química , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Permanganato de Potássio/farmacologia , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo , Transcrição Gênica
19.
EMBO J ; 23(21): 4264-74, 2004 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-15470503

RESUMO

We used bacteriophage T7-encoded transcription inhibitor gene protein 2 (gp2) as a probe to study the contribution of the Escherichia coli RNA polymerase (RNAP) beta' subunit jaw domain--the site of gp2 binding--to activator and ATP hydrolysis-dependent open complex formation by the sigma(54)-RNAP. We show that, unlike sigma(70)-dependent transcription, activated transcription by sigma(54)-RNAP is resistant to gp2. In contrast, activator and ATP hydrolysis-independent transcription by sigma(54)-RNAP is highly sensitive to gp2. We provide evidence that an activator- and ATP hydrolysis-dependent conformational change involving the beta' jaw domain and promoter DNA is the basis for gp2-resistant transcription by sigma(54)-RNAP. Our results establish that accessory factors bound to the upstream face of the RNAP, communicate with the beta' jaw domain, and that such communication is subjected to regulation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Substâncias Macromoleculares , Modelos Moleculares , Desnaturação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/genética , RNA Polimerase Sigma 54 , Proteínas Repressoras/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
20.
EMBO J ; 23(21): 4253-63, 2004 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-15470504

RESUMO

Sigma factors, the key regulatory components of the bacterial RNA polymerase (RNAP), direct promoter DNA binding and DNA melting. The sigma(54)-RNAP forms promoter complexes in which DNA melting is only triggered by an activator and ATP hydrolysis-driven reorganisation of an initial sigma(54)-RNAP-promoter complex. We report that an initial bacterial RNAP-DNA complex can be reorganised by an activator to form an intermediate transcription initiation complex where full DNA melting has not yet occurred. Using sigma(54) as a chemical nuclease we now show that the reorganisation of the initial sigma(54)-RNAP-promoter complex occurs upon interaction with the activator at the transition point of ATP hydrolysis. We demonstrate that this reorganisation event is an early step in the transcription initiation pathway that occurs independently of RNAP parts normally associated with stable DNA melting and open complex formation. Using photoreactive DNA probes, we provide evidence that within this reorganised sigma(54)-RNAP-promoter complex, DNA contacts across the 'to be melted' sequences are made by the sigma(54) subunit. Strikingly, the activator protein, but not core RNAP subunits, is close to these DNA sequences.


Assuntos
DNA Bacteriano , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Desnaturação de Ácido Nucleico , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Transcrição Gênica , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Radical Hidroxila/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54 , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA