Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(42): 20930-20937, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575742

RESUMO

In macrolecithal species, cryopreservation of the oocyte and zygote is not possible due to the large size and quantity of lipid deposited within the egg. For birds, this signifies that cryopreserving and regenerating a species from frozen cellular material are currently technically unfeasible. Diploid primordial germ cells (PGCs) are a potential means to freeze down the entire genome and reconstitute an avian species from frozen material. Here, we examine the use of genetically engineered (GE) sterile female layer chicken as surrogate hosts for the transplantation of cryopreserved avian PGCs from rare heritage breeds of chicken. We first amplified PGC numbers in culture before cryopreservation and subsequent transplantation into host GE embryos. We found that all hatched offspring from the chimera GE hens were derived from the donor rare heritage breed broiler PGCs, and using cryopreserved semen, we were able to produce pure offspring. Measurement of the mutation rate of PGCs in culture revealed that 2.7 × 10-10 de novo single-nucleotide variants (SNVs) were generated per cell division, which is comparable with other stem cell lineages. We also found that endogenous avian leukosis virus (ALV) retroviral insertions were not mobilized during in vitro propagation. Taken together, these results show that mutation rates are no higher than normal stem cells, essential if we are to conserve avian breeds. Thus, GE sterile avian surrogate hosts provide a viable platform to conserve and regenerate avian species using cryopreserved PGCs.


Assuntos
Animais Geneticamente Modificados/genética , Cruzamento/métodos , Galinhas/genética , Células Germinativas/citologia , Infertilidade/veterinária , Animais , Animais Geneticamente Modificados/fisiologia , Galinhas/fisiologia , Criopreservação , Diploide , Transferência Embrionária , Feminino , Edição de Genes , Engenharia Genética , Masculino
2.
Nat Commun ; 7: 12656, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27557800

RESUMO

Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development.


Assuntos
Coração/embriologia , Organizadores Embrionários/metabolismo , Animais , Biomarcadores/metabolismo , Padronização Corporal , Galinhas , Endoderma/embriologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Codorniz , Transcriptoma/genética
3.
BMC Biol ; 13: 12, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25857347

RESUMO

BACKGROUND: Macrophages have many functions in development and homeostasis as well as innate immunity. Recent studies in mammals suggest that cells arising in the yolk sac give rise to self-renewing macrophage populations that persist in adult tissues. Macrophage proliferation and differentiation is controlled by macrophage colony-stimulating factor (CSF1) and interleukin 34 (IL34), both agonists of the CSF1 receptor (CSF1R). In the current manuscript we describe the origin, function and regulation of macrophages, and the role of CSF1R signaling during embryonic development, using the chick as a model. RESULTS: Based upon RNA-sequencing comparison to bone marrow-derived macrophages grown in CSF1, we show that embryonic macrophages contribute around 2% of the total embryo RNA in day 7 chick embryos, and have similar gene expression profiles to bone marrow-derived macrophages. To explore the origins of embryonic and adult macrophages, we injected Hamburger-Hamilton stage 16 to 17 chick embryos with either yolk sac-derived blood cells, or bone marrow cells from EGFP+ donors. In both cases, the transferred cells gave rise to large numbers of EGFP+ tissue macrophages in the embryo. In the case of the yolk sac, these cells were not retained in hatched birds. Conversely, bone marrow EGFP+ cells gave rise to tissue macrophages in all organs of adult birds, and regenerated CSF1-responsive marrow macrophage progenitors. Surprisingly, they did not contribute to any other hematopoietic lineage. To explore the role of CSF1 further, we injected embryonic or hatchling CSF1R-reporter transgenic birds with a novel chicken CSF1-Fc conjugate. In both cases, the treatment produced a large increase in macrophage numbers in all tissues examined. There were no apparent adverse effects of chicken CSF1-Fc on embryonic or post-hatch development, but there was an unexpected increase in bone density in the treated hatchlings. CONCLUSIONS: The data indicate that the yolk sac is not the major source of macrophages in adult birds, and that there is a macrophage-restricted, self-renewing progenitor cell in bone marrow. CSF1R is demonstrated to be limiting for macrophage development during development in ovo and post-hatch. The chicken provides a novel and tractable model to study the development of the mononuclear phagocyte system and CSF1R signaling.


Assuntos
Galinhas/imunologia , Sistema Fagocitário Mononuclear/embriologia , Sistema Fagocitário Mononuclear/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Embrião de Galinha , Galinhas/genética , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Sistema Fagocitário Mononuclear/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Saco Vitelino/citologia
5.
Development ; 141(16): 3266-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063452

RESUMO

Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFß). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation.


Assuntos
Cromatina/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Transcriptoma , Animais , Padronização Corporal , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Epigênese Genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 1/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Transdução de Sinais , Medula Espinal/embriologia , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
6.
Am J Physiol Endocrinol Metab ; 304(9): E909-21, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23443924

RESUMO

Animal domestication has resulted in changes in growth and size. It has been suggested that this may have involved selection for differences in appetite. Divergent growth between chickens selected for egg laying or meat production is one such example. The neurons expressing AGRP and POMC in the basal hypothalamus are important components of appetite regulation, as are the satiety feedback pathways that carry information from the intestine, including CCK and its receptor CCKAR (CCK1 receptor). Using 16 generations of a cross between a fast and a relatively slow growing strain of chicken has identified a region on chromosome 4 downstream of the CCKAR gene, which is responsible for up to a 19% difference in body weight at 12 wk of age. Animals possessing the high-growth haplotype at the locus have lower expression of mRNA and immunoreactive CCKAR in the brain, intestine, and exocrine organs, which is correlated with increased levels of orexigenic AGRP in the hypothalamus. Animals with the high-growth haplotype are resistant to the anorectic effect of exogenously administered CCK, suggesting that their satiety set point has been altered. Comparison with traditional breeds shows that the high-growth haplotype has been present in the founders of modern meat-type strains and may have been selected early in domestication. This is the first dissection of the physiological consequences of a genetic locus for a quantitative trait that alters appetite and gives us an insight into the domestication of animals. This will allow elucidation of how differences in appetite occur in birds and also mammals.


Assuntos
Animais Domésticos , Peso Corporal/genética , Peso Corporal/fisiologia , Galinhas/genética , Galinhas/fisiologia , Crescimento/genética , Crescimento/fisiologia , Receptor de Colecistocinina A/biossíntese , Receptor de Colecistocinina A/fisiologia , Resposta de Saciedade/fisiologia , Proteína Relacionada com Agouti/biossíntese , Proteína Relacionada com Agouti/genética , Alelos , Animais , Química Encefálica/fisiologia , Cruzamentos Genéticos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Genótipo , Imuno-Histoquímica , Masculino , Polimorfismo de Nucleotídeo Único/genética , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Colecistocinina A/genética , Distribuição Tecidual , Transcrição Gênica
7.
Virol J ; 9: 61, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22390870

RESUMO

BACKGROUND: Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens.Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. METHODS: To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. RESULTS: Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. CONCLUSIONS: Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain.


Assuntos
Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/virologia , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/virologia , Embrião de Galinha , Galinhas/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Influenza Aviária/genética , Mucosa Intestinal/metabolismo , Intestinos/virologia , Masculino , RNA Viral/metabolismo , Transdução de Sinais
8.
Dev Dyn ; 240(5): 1163-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21465618

RESUMO

Point mutations in the intronic ZRS region of Lmbr1, a limb specific cis-regulatory element of Sonic hedgehog (Shh), are associated with polydactyly in humans, cats, and mice. We and others have recently mapped the dominant preaxial polydactyly (Po) locus in Silkie chickens to a single nucleotide polymorphism (SNP) in the ZRS region. Using polymorphisms in the chicken Shh sequence, we confirm that the ZRS region directly regulates Shh expression in the developing limb causing ectopic Shh expression in the anterior leg, prolonged Shh expression in the posterior limb, and allelic imbalance between wt and Slk Shh alleles in heterozygote limbs. Using Silkie legs, we have explored the consequences of increased Shh expression in the posterior leg on the patterning of the toes, and the induction of preaxial polydactyly.


Assuntos
Extremidades/embriologia , Proteínas Hedgehog/metabolismo , Animais , Gatos , Embrião de Galinha , Galinhas , Genótipo , Proteínas Hedgehog/genética , Hibridização In Situ , Camundongos , Polidactilia , Polimorfismo de Fragmento de Restrição/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
9.
PLoS Biol ; 9(3): e1001028, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423653

RESUMO

Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body.


Assuntos
Padronização Corporal , Galinhas , Plumas/embriologia , Pele/anatomia & histologia , Pele/embriologia , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião de Galinha , Galinhas/genética , Análise Mutacional de DNA , Plumas/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise em Microsséries , Dados de Sequência Molecular , Fenótipo , Transdução de Sinais , Pele/metabolismo , Tretinoína/metabolismo
10.
Endocrinology ; 149(11): 5527-39, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18669596

RESUMO

The pars tuberalis (PT) of the pituitary gland expresses a high density of melatonin (MEL) receptors and is believed to regulate seasonal physiology by decoding changes in nocturnal melatonin secretion. Circadian clock genes are known to be expressed in the PT in response to the decline (Per1) and onset (Cry1) of MEL secretion, but to date little is known of other molecular changes in this key MEL target site. To identify transcriptional pathways that may be involved in the diurnal and photoperiod-transduction mechanism, we performed a whole genome transcriptome analysis using PT RNA isolated from sheep culled at three time points over the 24-h cycle under either long or short photoperiods. Our results reveal 153 transcripts where expression differs between photoperiods at the light-dark transition and 54 transcripts where expression level was more globally altered by photoperiod (all time points combined). Cry1 induction at night was associated with up-regulation of genes coding for NeuroD1 (neurogenic differentiation factor 1), Pbef / Nampt (nicotinamide phosphoribosyltransferase), Hif1alpha (hypoxia-inducible factor-1alpha), and Kcnq5 (K+ channel) and down-regulation of Rorbeta, a key clock gene regulator. Using in situ hybridization, we confirmed day-night differences in expression for Pbef / Nampt, NeuroD1, and Rorbeta in the PT. Treatment of sheep with MEL increased PT expression for Cry1, Pbef / Nampt, NeuroD1, and Hif1alpha, but not Kcnq5. Our data thus reveal a cluster of Cry1-associated genes that are acutely responsive to MEL and novel transcriptional pathways involved in MEL action in the PT.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , Hipófise/efeitos dos fármacos , Hormônios Hipofisários/genética , Estações do Ano , Ovinos/genética , Animais , Ritmo Circadiano/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fotoperíodo , Hipófise/metabolismo
11.
BMC Genomics ; 9: 168, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18410676

RESUMO

BACKGROUND: Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. RESULTS: We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. CONCLUSION: This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents.


Assuntos
Galinhas/genética , Evolução Molecular , Genoma/genética , Genômica , Perus/genética , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cor , Citogenética , Humanos , Hibridização in Situ Fluorescente , Metáfase/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
12.
Vaccine ; 24(35-36): 6096-109, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16781024

RESUMO

In a respiratory-infection-model with the avian influenza A H9N2 virus we studied lung and splenic immune reactions in chickens using a recently developed 5K chicken immuno-microarray. Groups of chickens were either mock-immunized (referred to as non-immune), vaccinated with inactivated viral antigen only (immune) or with viral antigen in a water-in-oil (W/O) immunopotentiator (immune potentiated). Three weeks after vaccination all animals were given a respiratory infection. Immune potentiated birds developed inhibitory antiviral antibodies, showed minimal lung histopathology and no detectable viral sequences, while non-immune animals showed microscopic immunopathology and detectable virus. Immune birds, receiving antigen in saline only, showed minimal microscopic histopathology, and intermediate levels of virus detection. These classical features in the different groups were mirrored by overlapping or specific mRNA gene expression profiles in lungs and spleen using microarray analysis. To our knowledge this is the first study demonstrating pneumonia-associated lung pathology of the low pathogenic avian influenza H9N2 virus. Our data provide insights into the molecular interaction of this virus with its natural host when naive or primed by vaccination.


Assuntos
Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Aviária/imunologia , Pulmão/imunologia , Baço/imunologia , Animais , Apresentação de Antígeno/fisiologia , Antígenos CD/metabolismo , Apoptose/fisiologia , Linfócitos B/metabolismo , Galinhas , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Imunidade Inata , Influenza Aviária/patologia , Influenza Aviária/prevenção & controle , Interferon Tipo I/metabolismo , Pulmão/patologia , Células Mieloides/metabolismo , Baço/patologia , Receptores Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Regulação para Cima
13.
Genes Dev ; 20(10): 1365-77, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16702409

RESUMO

Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins.


Assuntos
Proteínas Aviárias/genética , Embrião de Galinha/anormalidades , Galinhas/genética , Polidactilia/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/análise , Proteínas Aviárias/metabolismo , Embrião de Galinha/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like/metabolismo , Dados de Sequência Molecular , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Mapeamento Físico do Cromossomo , Transporte Proteico , Transdução de Sinais , Somitos/citologia
14.
Genet Res ; 83(3): 197-209, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15462413

RESUMO

We used simultaneous mapping of interacting quantitative trait locus (QTL) pairs to study various growth traits in a chicken F2 intercross. The method was shown to increase the number of detected QTLs by 30 % compared with a traditional method detecting QTLs by their marginal genetic effects. Epistasis was shown to be an important contributor to the genetic variance of growth, with the largest impact on early growth (before 6 weeks of age). There is also evidence for a discrete set of interacting loci involved in early growth, supporting the previous findings of different genetic regulation of early and late growth in chicken. The genotype-phenotype relationship was evaluated for all interacting QTL pairs and 17 of the 21 evaluated QTL pairs could be assigned to one of four clusters in which the pairs in a cluster have very similar genetic effects on growth. The genetic effects of the pairs indicate commonly occurring dominance-by-dominance, heterosis and multiplicative interactions. The results from this study clearly illustrate the increase in power obtained by using this novel method for simultaneous detection of epistatic QTL, and also how visualization of genotype-phenotype relationships for epistatic QTL pairs provides new insights to biological mechanisms underlying complex traits.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Mapeamento Cromossômico/métodos , Epistasia Genética , Locos de Características Quantitativas/genética , Algoritmos , Animais , Cruzamentos Genéticos , Genótipo , Modelos Lineares , Fenótipo , Análise de Regressão
15.
Genetics ; 166(3): 1367-73, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15082555

RESUMO

Chicken genome mapping is important for a range of scientific disciplines. The ability to distinguish chromosomes of the chicken and other birds is thus a priority. Here we describe the molecular cytogenetic characterization of each chicken chromosome using chromosome painting and mapping of individual clones by FISH. Where possible, we have assigned the chromosomes to known linkage groups. We propose, on the basis of size, that the NOR chromosome is approximately the size of chromosome 22; however, we suggest that its original assignment of 16 should be retained. We also suggest a definitive chromosome classification system and propose that the probes developed here will find wide utility in the fields of developmental biology, DT40 studies, agriculture, vertebrate genome organization, and comparative mapping of avian species.


Assuntos
Galinhas/genética , Análise Citogenética , Genoma , Animais , Células Cultivadas , Mapeamento Cromossômico , Coloração Cromossômica , Cromossomos/classificação , Células Clonais , Fibroblastos/citologia , Ligação Genética , Hibridização in Situ Fluorescente , Cariotipagem , Região Organizadora do Nucléolo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA