RESUMO
A systematic literature review was conducted to determine the global status of newborn screening (NBS) for mucopolysaccharidosis (MPS) II (Hunter syndrome; OMIM 309900). Electronic databases were searched in July 2023 for articles referencing NBS for lysosomal storage diseases: 53 featured MPS II. Until recently, only Taiwan and two US states (Illinois and Missouri) formally screened newborns for MPS II, although pilot programs have been conducted elsewhere (Japan, New York, and Washington). In 2022, MPS II was added to the US Recommended Uniform Screening Panel, with increased uptake of NBS anticipated across the USA. While the overall MPS II birth prevalence, determined from NBS initiatives, was higher than in previous reports, it was lower in the USA (approximately 1 in 73,000 according to recent studies in Illinois and Missouri) than in Asia (approximately 1 in 15,000 in Japan). NBS programs typically rely on tandem mass spectrometry quantification of iduronate-2-sulfatase activity for first-tier testing. Diagnosis is often confirmed via molecular genetic testing and/or biochemical testing but may be complicated by factors such as pseudodeficiency alleles and variants of unknown significance. Evidence relating to MPS II NBS is lacking outside Taiwan and the USA. Although broad benefits of NBS are recognized, few studies specifically explored the perspectives of families of children with MPS II.
RESUMO
PURPOSE: This study investigated the relationship between mucopolysaccharidosis II (MPS II) iduronate-2-sulfatase gene (IDS) variants and phenotypic characteristics, particularly cognitive impairment, using data from the Hunter Outcome Survey (HOS) registry. METHODS: HOS data for male patients (n = 650) aged ≥5 years at latest cognitive assessment with available genetic data were analyzed. Predefined genotype categories were used to classify IDS variants and report phenotypic characteristics by genotype. RESULTS: At their latest cognitive assessment, 411 (63.2%) of 650 patients had cognitive impairment. Missense variants were the most common MPS II genotype, with about equal frequency for patients with and patients without cognitive impairment. Complete deletions/large rearrangements were associated with cognitive impairment. Cognitive impairment and behavioral issues were most common, and height and weight abnormalities most apparent, in patients with large IDS structural changes. Broadly, missense variants NM-000202.8:c.998C>T p.(Ser333Leu), NM-000202.8:c.1402C>T p.(Arg468Trp), NM-000202.8:c.1403G>A p.(Arg468Gln) and NM-000202.8:c.262C>T p.(Arg88Cys), and splice site variant NM-000202.8:c.257C>T p.(Pro86Leu), were associated with cognitive impairment, and variants NM-000202.8:c.253G>A p.(Ala85Thr), NM-000202.8:c.187 A>G p.(Asn63Asp), NM-000202.8:c.1037C>T p.(Ala346Val), NM-000202.8:c.182C>T p.(Ser61Phe) and NM-000202.8:c.1122C>T were not. CONCLUSION: This analysis contributes toward the understanding of MPS II genotype-phenotype relationships, confirming and expanding on existing findings in a large, geographically diverse population.
Assuntos
Disfunção Cognitiva , Estudos de Associação Genética , Genótipo , Mucopolissacaridose II , Fenótipo , Humanos , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Masculino , Criança , Adolescente , Pré-Escolar , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Mutação de Sentido Incorreto , Adulto , Adulto Jovem , Iduronato Sulfatase/genética , Sistema de Registros , Mutação , GlicoproteínasRESUMO
Mucopolysaccharidosis II (MPS II; Hunter syndrome; OMIM 309900) is a rare, X-linked, heterogeneous lysosomal storage disease. Approximately two-thirds of patients develop cognitive impairment, which is difficult to assess in clinical trials, partly owing to the variable nature of cognitive impairment. Analyzing data from siblings can help to minimize this heterogeneity. We report analyses of cognitive function from siblings with MPS II enrolled in clinical trials: a natural history study (NCT01822184), a randomized, open-label, phase 2/3 study of intravenous (IV) idursulfase with or without intrathecal idursulfase (idursulfase-IT; NCT02055118), and its extension (NCT2412787). Cognitive function was assessed using Differential Abilities Scales, Second Edition General Conceptual Ability (DAS-II GCA) scores; Bayley Scales of Infant and Toddler Development, Third Edition; and Vineland Adaptive Behavior Scales, Second Edition Adaptive Behavior Composite (VABS-II ABC). Seven sets of siblings (six pairs and one set of three) were included. All patients received IV idursulfase and 10 received subsequent idursulfase-IT. Younger siblings initiated IV idursulfase at an earlier age than their older sibling(s) in six of the sets; the younger sibling started treatment before 1 year of age in three sets. Monthly idursulfase-IT was generally associated with a stabilization of cognitive function: DAS-II GCA and VABS-II ABC scores were higher at age-matched assessments in the majority of those who either received idursulfase-IT earlier than their sibling or who received idursulfase-IT versus no idursulfase-IT. These data suggest that early initiation of intrathecal enzyme replacement therapy may stabilize or slow cognitive decline in some patients with neuronopathic MPS II.
RESUMO
INTRODUCTION: Current literature lacks consensus on initial assessments and routine follow-up care of patients with alpha-mannosidosis (AM). A Delphi panel was conducted to generate and validate recommendations on best practices for initial assessment, routine follow-up care, and integrated care coordination of patients with AM. METHODS: A modified Delphi method involving 3 rounds of online surveys was used. An independent administrator and 2 nonvoting physician co-chairs managed survey development, anonymous data collection, and analysis. A multidisciplinary panel comprising 20 physicians from 12 countries responded to 57 open-ended questions in the first survey. Round 2 consisted of 11 ranking questions and 44 voting statements. In round 3, panelists voted to validate 60 consensus statements. The panel response rate was ≥95% in all 3 rounds. Panelists used 5-point Likert scales to indicate importance (score of ≥3) or agreement (score of ≥4). Consensus was defined a priori as ≥75% agreement with ≥75% of panelists voting. RESULTS: Consensus was reached on 60 statements, encompassing 3 key areas: initial assessments, routine follow-up care, and treatment-related follow-up. The panel agreed on the type and frequency of assessments related to genetic testing, baseline evaluations, quality of life, biochemical measures, affected body systems, treatment received, and integrated care coordination in patients with AM. Forty-nine statements reached 90% to 100% consensus, 8 statements reached 80% to 85% consensus, and 1 statement reached 75% consensus. Two statements each reached consensus on 15 baseline assessments to be conducted at the initial follow-up visit after diagnosis in pediatric and adult patients. CONCLUSION: This is the first Delphi study providing internationally applicable, best-practice recommendations for monitoring patients with AM that may improve their care and well-being.
Assuntos
Consenso , Técnica Delphi , alfa-Manosidose , Humanos , alfa-Manosidose/terapia , alfa-Manosidose/diagnóstico , Inquéritos e Questionários , Prestação Integrada de Cuidados de Saúde/normasRESUMO
Phenylketonuria (PKU) is a genetic disorder caused by deficiency of the enzyme phenylalanine hydroxylase (PAH), which results in phenylalanine (Phe) accumulation in the blood and brain, and requires lifelong treatment to keep blood Phe in a safe range. Pegvaliase is an enzyme-substitution therapy approved for individuals with PKU and uncontrolled blood Phe concentrations (>600 µmol/L) despite prior management. Aggregated results from the PRISM clinical trials demonstrated substantial and sustained reductions in blood Phe with a manageable safety profile, but also noted individual variation in time to and dose needed for a first response. This analysis reports longer-term aggregate findings and characterizes individual participant responses to pegvaliase using final data from the randomized trials PRISM-1 (NCT01819727) and PRISM-2 (NCT01889862), and the open-label extension study 165-304 (NCT03694353). In 261 adult participants with a mean of 36.6 months of pegvaliase treatment, 71.3%, 65.1%, and 59.4% achieved clinically significant blood Phe levels of ≤600, ≤360, and ≤ 120 µmol/L, respectively. Some participants achieved blood Phe reductions with <20 mg/day pegvaliase, although most required higher doses. Based on Kaplan-Meier analysis, median (minimum, maximum) time to first achievement of a blood Phe threshold of ≤600, ≤360, or ≤ 120 µmol/L was 4.4 (0.0, 54.0), 8.0 (0.0, 57.0), and 11.6 (0.0, 66.0) months, respectively. Once achieved, blood Phe levels remained below clinical threshold in most participants. Sustained Phe response (SPR), a new method described within for measuring durability of blood Phe response, was achieved by 85.5%, 84.7%, and 78.1% of blood Phe responders at blood Phe thresholds of ≤600, ≤360, or ≤ 120 µmol/L, respectively. Longer-term safety data were consistent with previous reports, with the most common adverse events (AEs) being arthralgia, injection site reactions, headache, and injection site erythema. The incidence of most AEs, including hypersensitivity AEs, was higher during the early treatment phase (≤6 months) than later during treatment. In conclusion, using data from three key pegvaliase clinical trials, participants treated with pegvaliase were able to reach clinically significant blood Phe reductions to clinical thresholds of ≤600, ≤360, or ≤ 120 µmol/L during early treatment, with safety profiles improving from early to sustained treatment. This study also supports the use of participant-level data and new ways of looking at durable blood Phe responses to better characterize patients' individual PKU treatment journeys.
RESUMO
Infants born to mothers with phenylketonuria (PKU) may develop congenital abnormalities because of elevated phenylalanine (Phe) levels in the mother during pregnancy. Maintenance of blood Phe levels between 120 and 360 µmol/L reduces risks of birth defects. Sapropterin dihydrochloride helps maintain blood Phe control, but there is limited evidence on its risk-benefit ratio when used during pregnancy. Data from the maternal sub-registries-KAMPER (NCT01016392) and PKUDOS (NCT00778206; PKU-MOMs sub-registry)-were collected to assess the long-term safety and efficacy of sapropterin in pregnant women in a real-life setting. Pregnancy and infant outcomes, and the safety of sapropterin were assessed. Final data from 79 pregnancies in 57 women with PKU are reported. Sapropterin dose was fairly constant before and during pregnancy, with blood Phe levels maintained in the recommended target range during the majority (82%) of pregnancies. Most pregnancies were carried to term, and the majority of liveborn infants were reported as 'normal' at birth. Few adverse and serious adverse events were considered related to sapropterin, with these occurring in participants with high blood Phe levels. This report represents the largest population of pregnant women with PKU exposed to sapropterin. Results demonstrate that exposure to sapropterin during pregnancy was well-tolerated and facilitated maintenance of blood Phe levels within the target range, resulting in normal delivery. This critical real-world data may facilitate physicians and patients to make informed treatment decisions about using sapropterin in pregnant women with PKU and in women of childbearing age with PKU who are responsive to sapropterin.
Assuntos
Biopterinas , Fenilalanina , Fenilcetonúrias , Resultado da Gravidez , Sistema de Registros , Humanos , Gravidez , Feminino , Adulto , Fenilalanina/sangue , Biopterinas/análogos & derivados , Biopterinas/uso terapêutico , Biopterinas/efeitos adversos , Recém-Nascido , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/sangue , Fenilcetonúria Materna/tratamento farmacológico , Adulto Jovem , Europa (Continente) , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/sangueRESUMO
Phenylketonuria is characterized by intellectual disability and behavioral, psychiatric, and movement disorders resulting from phenylalanine (Phe) accumulation. Standard-of-care treatment involves a Phe-restricted diet plus medical nutrition therapy (MNT), with or without sapropterin dihydrochloride, to reduce blood Phe levels. Pegvaliase is an injectable enzyme substitution treatment approved for adult patients with blood Phe >600 µmol/L despite ongoing management. A previous comparative effectiveness analysis using data from the Phase 3 PRISM trials of pegvaliase (NCT01819727 and NCT01889862) and the Phenylketonuria Demographics, Outcomes and Safety Registry (PKUDOS; NCT00778206) suggested that pegvaliase was more effective at lowering mean blood Phe levels than sapropterin + MNT or MNT alone at 1 and 2 years of treatment. The current work augments and complements the previous analysis by including additional follow-up from the completed studies, robust methods reflecting careful consideration of issues with the distribution of Phe, and alternative methods for adjustment that are important for control of potential confounding in comparative effectiveness. Median blood Phe levels were lower, and median intact protein intakes were higher, in the pegvaliase group (n = 183) than in the sapropterin + MNT (n = 82) and MNT (n = 67) groups at Years 1, 2, and 3. In the pegvaliase group, median blood Phe levels decreased from baseline (1244 µmol/L) to Year 1 (535 µmol/L), Year 2 (142 µmol/L), and Year 3 (167 µmol/L). In the sapropterin + MNT group, median blood Phe levels decreased from baseline (900 µmol/L) to Year 1 (588 µmol/L) and Year 2 (592 µmol/L), and increased at Year 3 (660 µmol/L). In the MNT group, median blood Phe levels decreased slightly from baseline (984 µmol/L) to Year 1 (939 µmol/L) and Year 2 (941 µmol/L), and exceeded baseline levels at Year 3 (1157 µmol/L). The model-estimated proportions of participants achieving blood Phe ≤600 µmol/L were 41%, 100%, and 100% in the pegvaliase group at Years 1, 2, and 3, respectively, compared with 55%, 58%, and 38% in the sapropterin + MNT group and 5%, 16%, and 0% in the MNT group. The estimated proportions of participants achieving more stringent blood Phe targets of ≤360 µmol/L and ≤120 µmol/L were also higher in the pegvaliase group than in the other groups at Years 2 and 3. Overall, our results indicate that, compared with standard therapy, pegvaliase induces a substantial, progressive, and sustained decrease in blood Phe levels - to a much greater extent than sapropterin + MNT or MNT alone - which is expected to improve long-term outcomes in patients with phenylketonuria.
Assuntos
Biopterinas/análogos & derivados , Terapia Nutricional , Fenilcetonúrias , Adulto , Humanos , Fenilcetonúrias/terapia , Fenilalanina Amônia-Liase , Fenilalanina , Proteínas RecombinantesRESUMO
BACKGROUND: Mucopolysaccharidosis (MPS) II is a rare, X-linked lysosomal storage disease. Approximately two-thirds of patients have central nervous system involvement with some demonstrating progressive cognitive impairment (neuronopathic disease). The natural history of cognitive and adaptive function in patients with MPS II is not well-defined. This 2-year, prospective, observational study evaluated the neurodevelopmental trajectories of boys with MPS II aged ≥ 2 years and < 18 years. RESULTS: Overall, 55 patients were enrolled. At baseline, mean (standard deviation [SD]) age was 5.60 (3.32) years; all patients were receiving intravenous idursulfase. Cognitive and adaptive function were assessed using the Differential Ability Scales, Second Edition (DAS-II) General Conceptual Ability (GCA) and the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) Adaptive Behavior Composite (ABC) scores, respectively. Baseline mean (SD) DAS-II GCA and VABS-II ABC scores were 78.4 (19.11) and 83.7 (14.22), respectively, indicating low cognitive function and moderately low adaptive behavior. Over 24 months, modest deteriorations in mean (SD) scores were observed for DAS-II GCA (-3.8 [12.7]) and VABS-II ABC (-2.0 [8.07]). Changes in DAS-II GCA scores varied considerably, and data suggested the existence of four potential patient subgroups: (1) patients with marked early impairment and rapid subsequent decline, (2) patients with marked early impairment then stabilization, (3) patients with mild early impairment then stabilization, and (4) patients without impairment who remained stable. Subgroup analyses revealed numerically greater DAS-II GCA score reductions from baseline in patients aged < 7 years at baseline (vs. those aged ≥ 7 years) and in patients with DAS-II GCA scores ≤ 70 at baseline (vs. those with scores > 70); between-group differences were nonsignificant. No clear subgroups or patterns were identified for individual changes in VABS-II ABC scores. In total, 49 patients (89.1%) reported ≥ 1 adverse event (AE) and nine patients (16.4%) reported serious AEs. CONCLUSIONS: Some patients with MPS II had rapid declines in cognitive ability, whereas others remained relatively stable after an initial decline. These insights provide a basis for more detailed analyses of different patient subgroups, which may enhance the definition and understanding of factors that influence cognitive and adaptive function in MPS II. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01822184. Registered retrospectively: April 2, 2013.
Assuntos
Mucopolissacaridose II , Masculino , Criança , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Estudos Longitudinais , Adaptação PsicológicaRESUMO
Long-chain fatty acid oxidation disorders (LC-FAODs) result in life-threatening energy metabolism deficiencies/energy source depletion. Triheptanoin is an odd-carbon, medium chain triglyceride (that is an anaplerotic substrate of calories and fatty acids) for treating pediatric and adult patients with LC-FAODs. Study CL202 (NCT02214160), an open-label extension study of study CL201 (NCT01886378), evaluated the long-term safety/efficacy of triheptanoin in patients with LC-FAODs (N = 94), including cohorts who were triheptanoin naïve (n = 33) or had received triheptanoin in study CL201 (n = 24) or in investigator-sponsored trials/expanded access programs (IST/EAPs; n = 37). Primary endpoint was the annualized rate of LC-FAOD major clinical events (MCEs; rhabdomyolysis, hypoglycemia, cardiomyopathy). Mean ± standard deviation (SD) triheptanoin treatment durations were 27.4 ± 19.9, 46.9 ± 13.6, and 49.6 ± 21.4 months for the triheptanoin-naïve, CL201 rollover, and IST/EAP cohorts, respectively. In the triheptanoin-naïve cohort, median (interquartile range [IQR]) MCE rate significantly decreased from 2.00 (0.67-3.33) events/patient/year pre-triheptanoin to 0.28 (0.00-1.43) events/patient/year with triheptanoin (p = 0.0343), a reduction of 86%. In the CL201 rollover cohort, mean ± SD MCE rate significantly decreased from 1.76 ± 1.64 events/patient/year pre-triheptanoin to 1.00 ± 1.00 events/patient/year with triheptanoin (p = 0.0347), a reduction of 43%. In the IST/EAP cohort, mean ± SD MCE rate was 1.40 ± 2.37 (median [IQR] 0.57 [0.00-1.67]) events/patient/year with triheptanoin. Safety data were consistent with previous observations. Treatment-related treatment-emergent adverse events (TEAEs) occurred in 68.1% of patients and were mostly mild/moderate in severity. Five patients had seven serious treatment-related TEAEs; all resolved. Our results confirm the long-term efficacy of triheptanoin for patients with LC-FAOD.
Assuntos
Erros Inatos do Metabolismo Lipídico , Adulto , Criança , Humanos , Ácidos Graxos/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Oxirredução , Triglicerídeos/uso terapêuticoRESUMO
A late-onset Pompe disease patient developed high sustained antibody titers (HSAT) of ≥51,200 after 11+ years on alglucosidase alfa and previous tolerance. There was a corresponding worsening of motor function and rise in urinary glucose tetrasaccharide (Glc4). Following immunomodulation therapy, HSAT were eliminated with improved clinical outcomes and biomarker trends. This report highlights the importance of continued surveillance of antibody titers and biomarkers, the negative impact of HSAT, and improved outcomes with immunomodulation therapy.
RESUMO
We describe our experience with population-based newborn screening for mucopolysaccharidosis type II (MPS II) in 586,323 infants by measurement of iduronate-2-sulfatase activity in dried blood spots between December 12, 2017 and April 30, 2022. A total of 76 infants were referred for diagnostic testing, 0.01% of the screened population. Of these, eight cases of MPS II were diagnosed for an incidence of 1 in 73,290. At least four of the eight cases detected had an attenuated phenotype. In addition, cascade testing revealed a diagnosis in four extended family members. Fifty-three cases of pseudodeficiency were also identified, for an incidence of 1 in 11,062. Our data suggest that MPS II may be more common than previously recognized with a higher prevalence of attenuated cases.
Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Lactente , Recém-Nascido , Humanos , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/epidemiologia , Mucopolissacaridose II/genética , Triagem Neonatal , Incidência , FamíliaRESUMO
BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.
Assuntos
Epilepsia Generalizada , Epilepsia , Canais de Potássio Éter-A-Go-Go , Criança , Humanos , Recém-Nascido , Epilepsia/genética , Epilepsia Generalizada/genética , Mutação , Fenótipo , Convulsões/genética , Canais de Potássio Éter-A-Go-Go/genéticaRESUMO
Zinc-finger nuclease (ZFN)-based in vivo genome editing is a novel treatment that can potentially provide lifelong protein replacement with single intravenous administration. Three first-in-human open-label ascending single-dose phase 1/2 studies were performed in parallel (starting November 2017) primarily to assess safety and tolerability of ZFN in vivo editing therapy in mucopolysaccharidosis I (MPS I) (n = 3), MPS II (n = 9), and hemophilia B (n = 1). Treatment was well tolerated with no serious treatment-related adverse events. At the 1e13 vg/kg dose, evidence of genome editing was detected through albumin-transgene fusion transcripts in liver for MPS II (n = 2) and MPS I (n = 1) subjects. The MPS I subject also had a transient increase in leukocyte iduronidase activity to the lower normal range. At the 5e13 vg/kg dose, one MPS II subject had a transient increase in plasma iduronate-2-sulfatase approaching normal levels and one MPS I subject approached mid-normal levels of leukocyte iduronidase activity with no evidence of genome editing. The hemophilia B subject was not able to decrease use of factor IX concentrate; genome editing could not be assessed. Overall, ZFN in vivo editing therapy had a favorable safety profile with evidence of targeted genome editing in liver, but no long-term enzyme expression in blood.
Assuntos
Nucleases de Dedos de Zinco , HumanosRESUMO
In 2018, pegvaliase was approved as the first enzyme substitution treatment for phenylketonuria (PKU) and is now the second medication available for PKU patients since the approval of sapropterin dihydrochloride in 2007. Historically, dietary management has been the mainstay of treatment for PKU. While sapropterin response rate is limited to approximately 50% of PKU patients, pegvaliase has the potential to reduce phenylalanine levels in all PKU patients (Vockley et al., 2014; Longo et al., 2019 [1,3]). Current FDA labeling for pegvaliase includes a dose maximum of 60 mg daily (Longo et al., 2019; BioMarin Pharmaceutical Inc., 2020 [3,4]). We report a case series of four phenylalanine hydroxylase (PAH) deficient patients, previously treated with dietary management only, who initiated treatment with pegvaliase and were titrated to 80 mg daily dosing. The safety profile in these four cases did not differ from lower maintenance dosing (Longo et al., 2019 [3]). Subsequent decreases in Phe levels were observed on 80 mg maintenance dosing, allowing for individualized dietary liberalization in three out of four patients. We conclude that pegvaliase dosing must be personalized to achieve therapeutic goals and that some patients may require higher doses than those included on the product label.
RESUMO
Background: Phenylketonuria (PKU) is an inborn metabolic error characterized by a deficiency of the enzyme required for the metabolism of phenylalanine, an essential amino acid found in most protein-containing foods. Pegvaliase (Palynziq®) is an enzyme substitution therapy approved for adults with PKU who have inadequate blood phenylalanine control (≥600 µmol/L) on existing management. Objective: To characterize the treatment, discontinuation, and dosing patterns in patients treated with pegvaliase in real-world practice settings in the United States following commercial availability in 2018. Study design: Retrospective cohort study using BioMarin's proprietary drug dispense database associated with the pegvaliase REMS program. Methods: Sample construction identified all patients who properly initiated pegvaliase in real world settings ('full cohort') and a subset of patients ('extended follow-up cohort') with ≥12 months between first dispense of maximum dose and last pegvaliase dispense. Key outcomes were quantified across patients in both cohorts: maximum daily dose; time to maximum daily dose; maximum daily syringes; and dose escalation over time. The overall dose at discontinuation and time to discontinuation were calculated. Patients who subsequently reinitiated therapy were identified. For the extended follow-up cohort, 12-month changes in dose and syringes and dispensing gaps during the 12 months after maximum dose were quantified across all patients and were further stratified by maximum dose. Results: Overall, 1596 patients associated with 33,814 dispenses were reflected in the pegvaliase dispense dataset during the study period from July 9, 2018, through December 31, 2021; 1280 patients associated with 25,973 dispenses met inclusion criteria for the full cohort, with 19.9 dispenses each on average. Of these patients, 483 patients associated with 15,149 dispenses also met the extended follow-up criteria, with an average of 31.4 dispenses.Average treatment duration in the full cohort was 82.2 weeks, including 50.8 weeks after maximum daily dose was achieved. The average maximum daily dose was 30 mg with an average time to maximum dose of 31.8 weeks: 43.0% of patients had a maximum dose of 20 mg, 31.3% a maximum dose of 40 mg, and 12.0% a maximum dose of 60 mg. At data cut-off, 289 patients (22.6%) had discontinued; within this group, 126 patients (43.6%) discontinued within the first 6 months after reaching maximum dose.The overall average treatment duration for patients in the extended follow up cohort at data cut off was 131.2 weeks, including 98.6 weeks after maximum dose was achieved. The average maximum daily dose across the cohort was 32.9 mg: 42.4% of patients had a maximum dose of 20 mg, 41.0% a maximum dose of 40 mg, and 11.2% a maximum dose of 60 mg. At 12 months after achieving maximum dose, 35% of patients had down-dosed, with a 46.8% decrease (on average) from their maximum dose. Conclusions: Real-world use of pegvaliase reflects longer titration periods than in the dosing schedule based on trial experience. Over time, a substantial number of patients are able to reduce their daily dose by titrating down from their maximum dose, a finding of great interest to clinicians and patients alike.
RESUMO
BACKGROUND: The Morquio A Registry Study (MARS) is an ongoing, multinational, observational study of patients with MPS IVA. Key objectives of MARS are to characterize the heterogeneity and natural history of disease and to evaluate long-term effectiveness and safety of elosulfase alfa enzyme replacement therapy (ERT). Enrollment began in September 2014; data on medical history, clinical outcomes, and safety assessments are collected as part of routine care. RESULTS: As of February 2021, 381 subjects from 17 countries had enrolled in MARS: 58 ERT-naïve subjects and 323 ERT-treated subjects (≥1 infusion), with a mean ERT exposure of 5.5 years (SD 2.8) and median age at first ERT treatment of 9.8 years. ERT-treated subjects were younger at diagnosis (median 3.4 vs 6.5 years) relative to ERT-naïve subjects. Among ERT-treated subjects, urinary keratan sulfate (uKS) levels declined from pre-ERT baseline to last follow-up on treatment (mean % change [95% confidence interval]: -52.5% [-57.5%, -47.4%]; n = 115) and 6-min walk test distance remained stable (mean change: -6.1 [-27.6, 15.5] m; n = 131) over a mean follow-up of 5.5 years. Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) increased in subjects who were < 18 years of age at ERT initiation (mean change: +0.3 [0.1, 0.4] L and + 0.4 [0.3, 0.5] L; mean follow-up: â¼6 years; n = 82) and were stable in subjects ≥18 years (mean change: 0.0 [-0.0, 0.1] L and 0.0 [-0.1, 0.1] L; mean follow-up: 4.6 years; n = 38). Overall, 148 (47.1%) ERT-treated subjects experienced ≥1 adverse event (AE) and 110 subjects (35%) reported ≥1 serious AE. Drug-related AEs were reported in 39 (12.4%) subjects; the most common were hypersensitivity (9 subjects [2.9%]), urticaria (8 subjects [2.5%]), and pyrexia (7 subjects [2.2%]). CONCLUSIONS: MARS is the longest and largest observational study of MPS IVA patients to date, with a heterogenous population that is representative of the MPS IVA population overall. Data collected over the first 6 years of MARS provide real-world evidence for long-term stabilization of endurance and respiratory function among ERT-treated patients, with no new safety concerns identified.
Assuntos
Mucopolissacaridose IV , Humanos , Criança , Sulfato de Queratano/urina , Método Duplo-Cego , Terapia de Reposição de Enzimas/efeitos adversos , Sistema de RegistrosRESUMO
PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.