Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
medRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39006442

RESUMO

Contour integration, the process of joining spatially separated elements into a single unified line, has consistently been found to be impaired in schizophrenia. Recent work suggests that this deficit could be associated with psychotic symptomatology, rather than a specific diagnosis such as schizophrenia. Examining a transdiagnostic sample of participants with psychotic psychopathology, we obtained quantitative indices of contour perception in a psychophysical behavioral task. We found impaired contour discrimination performance among people with psychotic psychopathology (PwPP, n = 62) compared to healthy controls (n = 34) and biological relatives of PwPP (n = 44). Participants with schizophrenia (n = 31) showed impaired task performance compared to participants with bipolar disorder (n = 18). We also measured responses during an analogous task using ultra-high field (7T) functional MRI and found higher responses in the lateral occipital cortex of PwPP compared to controls. Using task-based functional connectivity analyses, we observed abnormal connectivity between visual brain areas during contour perception among PwPP. These connectivity differences only emerged when participants had to distinguish the contour object from background distractors, suggesting that a failure to suppress noise elements relative to contour elements may underlie impaired contour processing in PwPP. Our results are consistent with impaired contour integration in psychotic psychopathology, and especially schizophrenia, that is related to cognitive dysfunction, and may be linked to impaired functional connectivity across visual regions.

2.
Psychol Med ; 54(7): 1441-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38197294

RESUMO

BACKGROUND: Schizophrenia is associated with hypoactivation of reward sensitive brain areas during reward anticipation. However, it is unclear whether these neural functions are similarly impaired in other disorders with psychotic symptomatology or individuals with genetic liability for psychosis. If abnormalities in reward sensitive brain areas are shared across individuals with psychotic psychopathology and people with heightened genetic liability for psychosis, there may be a common neural basis for symptoms of diminished pleasure and motivation. METHODS: We compared performance and neural activity in 123 people with a history of psychosis (PwP), 81 of their first-degree biological relatives, and 49 controls during a modified Monetary Incentive Delay task during fMRI. RESULTS: PwP exhibited hypoactivation of the striatum and anterior insula (AI) during cueing of potential future rewards with each diagnostic group showing hypoactivations during reward anticipation compared to controls. Despite normative task performance, relatives demonstrated caudate activation intermediate between controls and PwP, nucleus accumbens activation more similar to PwP than controls, but putamen activation on par with controls. Across diagnostic groups of PwP there was less functional connectivity between bilateral caudate and several regions of the salience network (medial frontal gyrus, anterior cingulate, AI) during reward anticipation. CONCLUSIONS: Findings implicate less activation and connectivity in reward processing brain regions across a spectrum of disorders involving psychotic psychopathology. Specifically, aberrations in striatal and insular activity during reward anticipation seen in schizophrenia are partially shared with other forms of psychotic psychopathology and associated with genetic liability for psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adulto , Humanos , Recompensa , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Motivação , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Antecipação Psicológica/fisiologia
3.
Neuroimage ; 272: 120081, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011715

RESUMO

Conscientiousness, and related constructs impulsivity and self-control, have been related to structural and functional properties of regions in the prefrontal cortex (PFC) and anterior insula. Network-based conceptions of brain function suggest that these regions belong to a single large-scale network, labeled the salience/ventral attention network (SVAN). The current study tested associations between conscientiousness and resting-state functional connectivity in this network using two community samples (N's = 244 and 239) and data from the Human Connectome Project (N = 1000). Individualized parcellation was used to improve functional localization accuracy and facilitate replication. Functional connectivity was measured using an index of network efficiency, a graph theoretical measure quantifying the capacity for parallel information transfer within a network. Efficiency of a set of parcels in the SVAN was significantly associated with conscientiousness in all samples. Findings are consistent with a theory of conscientiousness as a function of variation in neural networks underlying effective prioritization of goals.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Vias Neurais , Mapeamento Encefálico
4.
Brain Stimul ; 15(3): 823-832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644517

RESUMO

BACKGROUND: Findings from correlative neuroimaging studies link increased frontoparietal network (FPN) activation and default mode network (DMN) deactivation to enhanced high cognitive demand processing. To causally investigate FPN-DMN contributions to high cognitive demand processing, the current interleaved TMS-fMRI study simultaneously manipulated and indexed neural activity while tracking cognitive performance during high and low cognitive load conditions. METHODS: Twenty participants completed an n-back task consisting of four conditions (0-back, 0-backTMS, 2-back, 2-backTMS) while undergoing interleaved TMS-fMRI. During TMS concurrent with n-back blocks, TMS single pulses were delivered to the left DLPFC at 100% motor-threshold every 2.4s. RESULTS: TMS delivered during high cognitive load strengthened cognitive processing. FPN node activations and DMN node deactivations were increased in the high versus low cognitive load TMS condition. Contrary to our hypothesis, TMS did not increase high load related activation in FPN nodes. However, as hypothesized, increased DMN node deactivations emerged as a function of TMS during high load (right angular gyrus) and from interactions between cognitive load and TMS (right middle temporal gyrus). Load and TMS combined to dampen activation within the DMN at trend level (p = .058). Deactivation in a dorsomedial DMN node was associated with TMS driven improvements in high load cognitive processing. CONCLUSIONS: Exogenous perturbation of the DLPFC via single pulse TMS amplified DMN node deactivations and enhanced high cognitive demand processing. Neurobehavioral findings linking these effects hint at a promising, albeit preliminary, cognitive control substrate requiring replication in higher-powered studies that use control stimulation.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Encéfalo/fisiologia , Mapeamento Encefálico , Córtex Pré-Frontal Dorsolateral , Humanos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia
5.
Cogn Affect Behav Neurosci ; 22(2): 383-402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34668171

RESUMO

Social cognitive processes, such as emotion perception and empathy, allow humans to navigate complex social landscapes and are associated with specific neural systems. In particular, theory of mind (ToM), which refers to our ability to decipher the mental states of others, is related to the dorsal medial prefrontal cortex and temporoparietal junction, which include portions of the default network. Both social cognition and the default network have been linked to the personality trait Agreeableness. We hypothesized that default network activity during a ToM task would positively predict social cognitive abilities and Agreeableness. In a 3T fMRI scanner, participants (N = 1050) completed a ToM task in which they observed triangles displaying random or social (i.e., human-like) movement. Participants also completed self-report measures of Agreeableness and tests of intelligence and social cognitive ability. In each participant, average blood oxygen level dependent responses were calculated for default network regions associated with social cognition, and structural equation modeling was used to test associations of personality and task performance with activation in those brain regions. Default network activation in the dorsal medial subsystem was greater for social versus random animations. Default network activation in response to social animations predicted better performance on social cognition tasks and, to a lesser degree, higher Agreeableness. Neural response to social stimuli in the default network may be associated with effective social processing and could have downstream effects on social interactions. We discuss theoretical and methodological implications of this work for social and personality neuroscience.


Assuntos
Teoria da Mente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição/fisiologia , Humanos , Individualidade , Imageamento por Ressonância Magnética , Teoria da Mente/fisiologia
6.
Neuroimage ; 241: 118439, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339830

RESUMO

Investigations within the Human Connectome Project have expanded to include studies focusing on brain disorders. This paper describes one of the investigations focused on psychotic psychopathology: The psychosis Human Connectome Project (P-HCP). The data collected as part of this project were multimodal and derived from clinical assessments of psychopathology, cognitive assessments, instrument-based motor assessments, blood specimens, and magnetic resonance imaging (MRI) data. The dataset will be made publicly available through the NIMH Data Archive. In this report we provide specific information on how the sample of participants was obtained and characterized and describe the experimental tasks and procedures used to probe neural functions involved in psychotic disorders that may also mark genetic liability for psychotic psychopathology. Our goal in this paper is to outline the data acquisition process so that researchers intending to use these publicly available data can plan their analyses. MRI data described in this paper are limited to data acquired at 3 Tesla. A companion paper describes the study's 7 Tesla image acquisition protocol in detail, which is focused on visual perceptual functions in psychotic psychopathology.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Adulto , Estudos Transversais , Bases de Dados Factuais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Seleção de Pacientes , Transtornos Psicóticos/psicologia
7.
Neurosci Biobehav Rev ; 128: 421-436, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242718

RESUMO

Fear generalization to stimuli resembling a conditioned danger-cue (CS+) is a fundamental dynamic of classical fear-conditioning. Despite the ubiquity of fear generalization in human experience and its known pathogenic contribution to clinical anxiety, neural investigations of human generalization have only recently begun. The present work provides the first meta-analysis of this growing literature to delineate brain substrates of conditioned fear-generalization and formulate a working neural model. Included studies (K = 6, N = 176) reported whole-brain fMRI results and applied generalization-gradient methodology to identify brain activations that gradually strengthen (positive generalization) or weaken (negative generalization) as presented stimuli increase in CS+ resemblance. Positive generalization was instantiated in cingulo-opercular, frontoparietal, striatal-thalamic, and midbrain regions (locus coeruleus, periaqueductal grey, ventral tegmental area), while negative generalization was implemented in default-mode network nodes (ventromedial prefrontal cortex, hippocampus, middle temporal gyrus, angular gyrus) and amygdala. Findings are integrated within an updated neural account of generalization centering on the hippocampus, its modulation by locus coeruleus and basolateral amygdala, and the excitation of threat- or safety-related loci by the hippocampus.


Assuntos
Mapeamento Encefálico , Medo , Encéfalo/diagnóstico por imagem , Condicionamento Clássico , Generalização Psicológica , Humanos , Imageamento por Ressonância Magnética
8.
Hum Brain Mapp ; 42(13): 4205-4223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156132

RESUMO

Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI, but suffers from significant geometric distortions in the phase encoding direction caused by inhomogeneities in the static magnetic field (B0 ). This is a particular challenge for EPI at very high field (≥7 T), as distortion increases with higher field strength. A number of techniques for distortion correction exist, including those based on B0 field mapping and acquiring EPI scans with opposite phase encoding directions. However, few quantitative comparisons of distortion compensation methods have been performed using human EPI data, especially at very high field. Here, we compared distortion compensation using B0 field maps and opposite phase encoding scans in two different software packages (FSL and AFNI) applied to 7 T gradient echo (GE) EPI data from 31 human participants. We assessed distortion compensation quality by quantifying alignment to anatomical reference scans using Dice coefficients and mutual information. Performance between FSL and AFNI was equivalent. In our whole-brain analyses, we found superior distortion compensation using GE scans with opposite phase encoding directions, versus B0 field maps or spin echo (SE) opposite phase encoding scans. However, SE performed better when analyses were limited to ventromedial prefrontal cortex, a region with substantial dropout. Matching the type of opposite phase encoding scans to the EPI data being corrected (e.g., SE-to-SE) also yielded better distortion correction. While the ideal distortion compensation approach likely varies depending on methodological differences across experiments, this study provides a framework for quantitative comparison of different distortion compensation methods.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imagem Ecoplanar , Neuroimagem Funcional , Adulto , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Família , Feminino , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-33359154

RESUMO

BACKGROUND: Dysfunctional connectivity within the perceptual hierarchy is proposed to be an integral component of psychosis. The fragmented ambiguous object task was implemented to investigate neural connectivity during object recognition in patients with schizophrenia (SCZ) and bipolar disorder and first-degree relatives of patients with SCZ (SREL). METHODS: We analyzed 3T functional magnetic resonance imaging data collected from 27 patients with SCZ, 23 patients with bipolar disorder, 24 control subjects, and 19 SREL during the administration of the fragmented ambiguous object task. Fragmented ambiguous object task stimuli were line-segmented versions of objects and matched across a number of low-level features. Images were categorized as meaningful or meaningless based on ratings assigned by the participants. RESULTS: An a priori region of interest was defined in the primary visual cortex (V1). In addition, the lateral occipital complex/ventral visual areas, intraparietal sulcus (IPS), and middle frontal gyrus (MFG) were identified functionally via the contrast of cortical responses to stimuli judged as meaningful or meaningless. SCZ was associated with altered neural activations at V1, IPS, and MFG. Psychophysiological interaction analyses revealed negative connectivity between V1 and MFG in patient groups and altered modulation of connectivity between conditions from right IPS to left IPS and right IPS to left MFG in patients with SCZ and SREL. CONCLUSIONS: Results provide evidence that SCZ is associated with inefficient processing of ambiguous visual objects at V1, which is likely attributable to altered feedback from higher-level visual areas. We also observed distinct patterns of aberrant connectivity among low-level, mid-level, and high-level visual areas in patients with SCZ, patients with bipolar disorder, and SREL.


Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Parietal , Percepção Visual/fisiologia
10.
Psychol Med ; 51(15): 2610-2619, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32366335

RESUMO

BACKGROUND: Generalization of conditioned-fear, a core feature of post-traumatic stress disorder (PTSD), has been the focus of several recent neuroimaging studies. A striking outcome of these studies is the frequency with which neural correlates of generalization fall within hubs of well-established functional networks including salience (SN), central executive (CEN), and default networks (DN). Neural substrates of generalization found to date may thus reflect traces of large-scale brain networks that form more expansive neural representations of generalization. The present study includes the first network-based analysis of generalization and PTSD-related abnormalities therein. METHODS: fMRI responses in established intrinsic connectivity networks (ICNs) representing SN, CEN, and DN were assessed during a generalized conditioned-fear task in male combat veterans (N = 58) with wide-ranging PTSD symptom severity. The task included five rings of graded size. Extreme sizes served as conditioned danger-cues (CS+: paired with shock) and safety-cues (CS-), and the three intermediate sizes served as generalization stimuli (GSs) forming a continuum-of-size between CS+ and CS-. Generalization-gradients were assessed as behavioral and ICN response slopes from CS+, through GSs, to CS-. Increasing PTSD symptomatology was predicted to relate to less-steep slopes indicative of stronger generalization. RESULTS: SN, CEN, and DN responses fell along generalization-gradients with levels of generalization within and between SN and CEN scaling with PTSD symptom severity. CONCLUSIONS: Neural substrates of generalized conditioned-fear include large-scale networks that adhere to the functional organization of the brain. Current findings implicate levels of generalization in SN and CEN as promising neural markers of PTSD.


Assuntos
Medo/psicologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Campanha Afegã de 2001- , Conflitos Armados/psicologia , Sinais (Psicologia) , Medo/fisiologia , Generalização Psicológica , Humanos , Imageamento por Ressonância Magnética , Masculino , Militares , Estados Unidos , Veteranos
11.
Personal Neurosci ; 3: e9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32914044

RESUMO

Posttraumatic stress disorder (PTSD) is often complicated by the after-effects of mild traumatic brain injury (mTBI). The mixture of brain conditions results in abnormal affective and cognitive functioning, as well as maladaptive behavior. To better understand how brain activity explains cognitive and emotional processes in these conditions, we used an emotional N-back task and functional magnetic resonance imaging (fMRI) to study neural responses in US military veterans after deployments to Iraq and Afghanistan. Additionally, we sought to examine whether hierarchical dimensional models of maladaptive personality could account for the relationship between combat-related brain conditions and fMRI responses under cognitive and affective challenge. FMRI data, measures of PTSD symptomatology (PTSS), blast-induced mTBI (bmTBI) severity, and maladaptive personality (MMPI-2-RF) were gathered from 93 veterans. Brain regions central to emotion regulation were selected for analysis, and consisted of bilateral amygdala, bilateral dorsolateral prefrontal (dlPFC), and ventromedial prefrontal/subgenual anterior cingulate (vmPFC-sgACC). Cognitive load increased activity in dlPFC and reduced activity in emotional responding brain regions. However, individuals with greater PTSS showed blunted deactivations in bilateral amygdala and vmPFC-sgACC, and weaker responses in right dlPFC. Additionally, we found that elevated emotional/internalizing dysfunction (EID), specifically low positive emotionality (RC2), accounted for PTSS-related changes in bilateral amygdala under increased cognitive load. Findings suggest that PTSS might result in amygdala and vmPFC-sgACC activity resistant to moderation by cognitive demands, reflecting emotion dysregulation despite a need to marshal cognitive resources. Anhedonia may be an important target for interventions that improve the affective and cognitive functioning of individuals with PTSD.

12.
PLoS One ; 14(4): e0215306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973914

RESUMO

Visual object recognition is a complex skill that relies on the interaction of many spatially distinct and specialized visual areas in the human brain. One tool that can help us better understand these specializations and interactions is a set of visual stimuli that do not differ along low-level dimensions (e.g., orientation, contrast) but do differ along high-level dimensions, such as whether a real-world object can be detected. The present work creates a set of line segment-based images that are matched for luminance, contrast, and orientation distribution (both for single elements and for pair-wise combinations) but result in a range of object and non-object percepts. Image generation started with images of isolated objects taken from publicly available databases and then progressed through 3-stages: a computer algorithm generating 718 candidate images, expert observers selecting 217 for further consideration, and naïve observers performing final ratings. This process identified a set of 100 images that all have the same low-level properties but cover a range of recognizability (proportion of naïve observers (N = 120) who indicated that the stimulus "contained a known object") and semantic stability (consistency across the categories of living, non-living/manipulable, and non-living/non-manipulable when the same observers named "known" objects). Stimuli are available at https://github.com/caolman/FAOT.git.


Assuntos
Percepção Visual/fisiologia , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Reconhecimento Psicológico/fisiologia , Adulto Jovem
13.
J Neurosci ; 39(17): 3292-3300, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30804086

RESUMO

Pitch and timbre are two primary features of auditory perception that are generally considered independent. However, an increase in pitch (produced by a change in fundamental frequency) can be confused with an increase in brightness (an attribute of timbre related to spectral centroid) and vice versa. Previous work indicates that pitch and timbre are processed in overlapping regions of the auditory cortex, but are separable to some extent via multivoxel pattern analysis. Here, we tested whether attention to one or other feature increases the spatial separation of their cortical representations and if attention can enhance the cortical representation of these features in the absence of any physical change in the stimulus. Ten human subjects (four female, six male) listened to pairs of tone triplets varying in pitch, timbre, or both and judged which tone triplet had the higher pitch or brighter timbre. Variations in each feature engaged common auditory regions with no clear distinctions at a univariate level. Attending to one did not improve the separability of the neural representations of pitch and timbre at the univariate level. At the multivariate level, the classifier performed above chance in distinguishing between conditions in which pitch or timbre was discriminated. The results confirm that the computations underlying pitch and timbre perception are subserved by strongly overlapping cortical regions, but reveal that attention to one or other feature leads to distinguishable activation patterns even in the absence of physical differences in the stimuli.SIGNIFICANCE STATEMENT Although pitch and timbre are generally thought of as independent auditory features of a sound, pitch height and timbral brightness can be confused for one another. This study shows that pitch and timbre variations are represented in overlapping regions of auditory cortex, but that they produce distinguishable patterns of activation. Most importantly, the patterns of activation can be distinguished based on whether subjects attended to pitch or timbre even when the stimuli remained physically identical. The results therefore show that variations in pitch and timbre are represented by overlapping neural networks, but that attention to different features of the same sound can lead to distinguishable patterns of activation.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Música , Discriminação da Altura Tonal/fisiologia , Percepção da Altura Sonora/fisiologia , Adulto Jovem
14.
J Neurotrauma ; 36(7): 1099-1105, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30014758

RESUMO

Mild traumatic brain injury (mTBI) is a significant cause of disability, especially when symptoms become chronic. This chronicity is often linked to oculomotor dysfunction (OMD). To our knowledge, this is the first prospective study to localize aberrations in brain function between mTBI cohorts, by comparing patients with mTBI with OMD with an mTBI control group without OMD, using task and resting-state functional magnetic resonance imaging (fMRI). Ten subjects with mTBI who had OMD (OMD group) were compared with nine subjects with mTBI who had no findings of OMD (control group). These groups were determined by a developmental optometrist using objective testing for OMD. The (convergence) task fMRI data demonstrated significantly decreased brain activity, measured as decreases in the blood oxygen level dependent (BOLD) signal, in the OMD group compared with the control group in three brain regions: the left posterior lingual gyrus, the bilateral anterior lingual gyrus and cuneus, and the parahippocampal gyrus. When doing a seed-based resting state fMRI analysis in the lingual/parahippocampal region, a large cluster covering the left middle frontal gyrus and the dorsolateral pre-frontal cortex (Brodmann areas 9 and 10), with decreased functional correlation in the OMD group, was identified. Together these observations provide evidence for neural networks of interactions involving the control of eye movement for visual processing, reading comprehension, spatial localization and navigation, and spatial working memory that appear to be decreased in mTBI patients with OMD compared with mTBI patients without OMD. The clinical symptomatology associated with post-traumatic OMD correlates well with these MRI findings.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos da Motilidade Ocular/diagnóstico por imagem , Adulto , Concussão Encefálica/complicações , Concussão Encefálica/fisiopatologia , Movimentos Oculares/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/fisiopatologia , Estudos Prospectivos , Navegação Espacial/fisiologia
16.
Hum Brain Mapp ; 39(2): 837-850, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143411

RESUMO

Identifying the pathophysiology of posttraumatic stress disorder (PTSD) is a critical step toward reducing its debilitating impact. Spontaneous neural activity, measured at rest using various neuroimaging techniques (e.g., regional homogeneity [ReHo], amplitude of low frequency fluctuations [ALFF]), can provide insight about baseline neurobiological factors influencing sensory, cognitive, or behavioral processes associated with PTSD. The present study used activation likelihood estimation (ALE) to conduct the largest-to-date quantitative meta-analysis of spontaneous neural activity in PTSD, including 457 PTSD cases, 292 trauma-exposed controls (TECs), and 293 non-traumatized controls (NTCs) across 22 published studies. Five regions-of-interest (ROIs) were identified where activity differed between PTSD cases and controls: one when compared to all controls (left globus pallidus), two when compared to TECs (left inferior parietal lobule [IPL] and right lingual gyrus), and two when compared to NTCs (left amygdala and right caudate head). To corroborate these results, a second analysis was conducted using resting-state functional magnetic resonance imaging on an independent sample of 205 previously-deployed US military veterans. In this analysis, converging evidence from ReHo and ALFF showed that spontaneous neural activity in the left IPL alone was positively correlated with PTSD symptom severity. This result is consistent with theoretical accounts that link left IPL activity with PTSD-relevant processes such as processing of emotional stimuli (e.g., fearful faces) and the extent that attention is captured by salient autobiographical memories. By modeling the neurobiological correlates of PTSD, we can increase our understanding of this debilitating disorder and guide the development of future clinical innovations.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Descanso
17.
Front Aging Neurosci ; 9: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270763

RESUMO

Although audiovisual (AV) training has been shown to improve overall speech perception in hearing-impaired listeners, there has been a lack of direct brain imaging data to help elucidate the neural networks and neural plasticity associated with hearing aid (HA) use and auditory training targeting speechreading. For this purpose, the current clinical case study reports functional magnetic resonance imaging (fMRI) data from two hearing-impaired patients who were first-time HA users. During the study period, both patients used HAs for 8 weeks; only one received a training program named ReadMyQuipsTM (RMQ) targeting speechreading during the second half of the study period for 4 weeks. Identical fMRI tests were administered at pre-fitting and at the end of the 8 weeks. Regions of interest (ROI) including auditory cortex and visual cortex for uni-sensory processing, and superior temporal sulcus (STS) for AV integration, were identified for each person through independent functional localizer task. The results showed experience-dependent changes involving ROIs of auditory cortex, STS and functional connectivity between uni-sensory ROIs and STS from pretest to posttest in both cases. These data provide initial evidence for the malleable experience-driven cortical functionality for AV speech perception in elderly hearing-impaired people and call for further studies with a much larger subject sample and systematic control to fill in the knowledge gap to understand brain plasticity associated with auditory rehabilitation in the aging population.

18.
Front Neurosci ; 11: 709, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311789

RESUMO

Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a condition that often evolves into Parkinson's disease (PD). Therefore, by monitoring iRBD it is possible to track the neurodegeneration of individuals who may progress to PD. Here we aimed at piloting the characterization of brain tissue properties in mid-brain subcortical regions of 10 healthy subjects, 8 iRBD, and 9 early-diagnosed PD. We used a battery of magnetic resonance imaging (MRI) contrasts at 3 T, including adiabatic and non-adiabatic rotating frame techniques developed by our group, along with diffusion tensor imaging (DTI) and resting-state fMRI. Adiabatic T1ρ and T2ρ, and non-adiabatic RAFF4 (Relaxation Along a Fictitious Field in the rotating frame of rank 4) were found to have lower coefficient of variations and higher sensitivity to detect group differences as compared to DTI parameters such as fractional anisotropy and mean diffusivity. Significantly longer T1ρ were observed in the amygdala of PD subjects vs. controls, along with a trend of lower functional connectivity as measured by regional homogeneity, thereby supporting the notion that amygdalar dysfunction occurs in PD. Significant abnormalities in reward networks occurred in iRBD subjects, who manifested lower network strength of the accumbens. In agreement with previous studies, significantly longer T1ρ occurred in the substantia nigra compacta of PD vs. controls, indicative of neuronal degeneration, while regional homogeneity was lower in the substantia nigra reticulata. Finally, other trend-level findings were observed, i.e., lower RAFF4 and T2ρ in the midbrain of iRBD subjects vs. controls, possibly indicating changes in non-motor features as opposed to motor function in the iRBD group. We conclude that rotating frame relaxation methods along with functional connectivity measures are valuable to characterize iRBD and PD subjects, and with proper validation in larger cohorts may provide pathological signatures of iRBD and PD.

19.
Am J Psychiatry ; 174(2): 125-134, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794690

RESUMO

OBJECTIVE: Heightened generalization of fear from an aversively reinforced conditioned stimulus (CS+, a conditioned danger cue) to resembling stimuli is widely accepted as a pathogenic marker of posttraumatic stress disorder (PTSD). Indeed, a distress response to benign stimuli that "resemble" aspects of the trauma is a central feature of the disorder. To date, the link between overgeneralization of conditioned fear and PTSD derives largely from clinical observations, with limited empirical work on the subject. This represents the first effort to examine behavioral and brain indices of generalized conditioned fear in PTSD using systematic methods developed in animals known as generalization gradients: the gradual decline in conditioned responding as the presented stimulus gradually differentiates from CS+. METHOD: Gradients of conditioned fear generalization were assessed using functional MRI and behavioral measures in U.S. combat veterans who served in Iraq or Afghanistan and had PTSD (N=26), subthreshold PTSD (N=19), or no PTSD (referred to as trauma control subjects) (N=17). Presented stimuli included rings of graded size, with extreme sizes serving as CS+ (paired with shock) and as a nonreinforced conditioned stimulus (CS-, a conditioned safety cue), and with intermediate sizes forming a continuum of similarity between CS+ and CS-. Generalization gradients were assessed as response slopes from CS+, through intermediate ring sizes, to CS-, with less steep slopes indicative of stronger generalization. RESULTS: Relative to trauma control subjects, PTSD patients showed stronger conditioned generalization, as evidenced by less steep generalization gradients in both behavioral risk ratings and brain responses in the left and right anterior insula, left ventral hippocampus, dorsolateral and dorsomedial prefrontal cortex, and caudate nucleus. Severity of PTSD symptoms across the three study groups was positively correlated with levels of generalization at two such loci: the right anterior insula and left ventral hippocampus. CONCLUSIONS: The results point to evidence of brain-based markers of overgeneralized fear conditioning related to PTSD. These findings provide further understanding of a central yet understudied symptom of trauma-related psychopathology.


Assuntos
Distúrbios de Guerra/fisiopatologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Generalização do Estímulo/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Veteranos/psicologia , Adulto , Campanha Afegã de 2001- , Nível de Alerta/fisiologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Distúrbios de Guerra/diagnóstico , Distúrbios de Guerra/psicologia , Dominância Cerebral/fisiologia , Humanos , Guerra do Iraque 2003-2011 , Imageamento por Ressonância Magnética , Masculino , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/psicologia
20.
J Neurosci ; 37(5): 1284-1293, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025255

RESUMO

Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT: Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness-an aspect of timbre or sound quality-allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a distributed code, with no clear anatomical distinctions between auditory cortical regions responsive to changes in either pitch or timbre, but also reveal a population code that can differentiate between changes in either dimension within the same cortical regions.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica , Córtex Auditivo/metabolismo , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Discriminação da Altura Tonal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA