Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893957

RESUMO

This study presents a new approach to investigating the impact of repeated reflow on the failure of ball grid array (BGA) packages. The issue with the BGA package collapse is that the repeated reflow can lead to short circuits, particularly for BGAs with a very fine pitch between leads. A novel approach was developed to measure the collapse of BGA solder balls during the melting and solidification process, enabling in situ measurements. The study focused on two types of solders: Sn63Pb37 as a reference, and the commonly used SAC305, with measurements taken at various temperatures. The BGA samples were subjected to three different heating/cooling cycles in a thermomechanical analyzer (TMA) at temperatures of 250 °C, 280 °C, and 300 °C, with a subsequent cooling down to 100 °C. The results obtained from the TMA indicated differences in the collapse behavior of both BGA solder alloys at various temperatures. Short circuits between neighboring leads (later confirmed by an X-ray analysis) were also recognizable on the TMA. The novel approach was successfully developed and applied, yielding clear insights into the behavior of solder balls during repeated reflow.

2.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676218

RESUMO

In this paper, the design and research of a sensor-based personal air-quality monitoring device are presented, which is retrofitted into different personal protective face masks. Due to its small size and low power consumption, the device can be integrated into and applied in practical urban usage. We present our research and the development of the sensor node based on a BME680-type environmental sensor cluster with a wireless IoT (Internet of Things)-capable central unit and overall low power consumption. The integration of the sensor node was investigated with traditional medical masks and a professional FFP2-type mask. The filtering efficiency after embedding was validated with a head model and a particle counter. We found that the professional mask withstood the embedding without losing the protective filtering aspect. We compared the inner and outer sensor data and investigated the temperature, pressure, humidity, and AQI (Air Quality Index) relations with possible sensor data-fusion options. The novelty is increased with the dual-sensor layout (inward and outward). It was found that efficient respiration monitoring is achievable with the device. With the analysis of the recorded data, characteristic signals were identified in an urban environment, enabling urban altimetry and urban zone detection. The results promote smart city concepts and help in endeavors related to SDGs (Sustainable Development Goals) 3 and 11.

3.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769913

RESUMO

The COVID-19 outbreak increased demand for personal protective respirator masks. Textile masks based on cloth materials appeared to be a sustainable, comfortable, and cost-effective alternative available in global communities. In this study, we used laser-based particle counting for mask material qualification to determine the concentration filtering efficiency in general, everyday community use. The efficiencies of eleven different commercially available textile materials were measured in single-, double-, and triple-layer configurations according to their grammage, mesh (XY), and inter-yarn gap. It was found that in the single-layer configurations, most materials were well below the acceptable standards, with a wide variation in filtering efficiency, which ranged from 5% to ~50%. However, when testing the fabrics in two or three layers, the efficiency increased significantly, exceeding or approaching the standard for medical masks. Three layers of natural silk was able to produce a level of filtration efficiency of 84.68%. Two-layered natural silk achieved 70.98%, cotton twill achieved 75.6%, and satin-weave viscose achieved 69.77%. Further options can also be considered in cases where lower filtration is acceptable It was statistically shown that applying a second layer was more significant in terms of overall filtering than increasing the layer count to three. However, layer stacking limited the breathability. The paper presents measurement-based qualitative and quantitative recommendations for future textile applications in face mask manufacturing.

4.
Polymers (Basel) ; 13(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883715

RESUMO

This work presented an FEM (finite element method) mathematical model that describes the temperature distribution in different parts of a 3D printer based on additive manufacturing process using filament extrusion during its operation. Variation in properties also originate from inconsistent choices of process parameters employed by individual manufacturers. Therefore, a mathematical model that calculates temperature changes in the filament (and the resulting print) during an FFF (fused filament fabrication) process was deemed useful, as it can estimate otherwise immeasurable properties (such as the internal temperature of the filament during the printing). Two variants of the model (both static and dynamic) were presented in this work. They can provide the user with the material's thermal history during the print. Such knowledge may be used in further analyses of the resulting prints. Thanks to the dynamic model, the cooling of the material on the printing bed can be traced for various printing speeds. Both variants simulate the printing of a PLA (Polylactic acid) filament with the nozzle temperature of 220 °C, bed temperature of 60 °C, and printing speed of 5, 10, and 15 m/s, respectively.

5.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947502

RESUMO

Flux contained in solder paste significantly affects the process of solder joint creation during reflow soldering, including the creation of an intermetallic layer (IML). This work investigates the dependence of intermetallic layer thickness on ROL0/ROL1 flux classification, glossy or matt solder mask, and OSP/HASL/ENIG soldering pad surface finish. Two original SAC305 solder pastes differing only in the used flux were chosen for the experiment. The influence of multiple reflows was also observed. The intermetallic layer thicknesses were obtained by the image analysis of micro-section images. The flux type proved to have a significant impact on the intermetallic layer thickness. The solder paste with ROL1 caused an increase in IML thickness by up to 40% in comparison to an identical paste with ROL0 flux. Furthermore, doubling the roughness of the solder mask has increased the resulting IML thickness by 37% at HASL surface finish and by an average of 22%.

6.
Materials (Basel) ; 13(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233687

RESUMO

Manganese can be an optimal alloying addition in lead-free SAC (SnAgCu) solder alloys because of its low price and harmless nature. In this research, the mechanical properties of the novel SAC0307 (Sn/Ag0.3/Cu0.7) alloyed with 0.7 wt.% Mn (designated as SAC0307-Mn07) and those of the traditionally used SAC305 (Sn96.5/Ag3/Cu0.5) solder alloys were investigated by analyzing the shear force and Vickers hardness of reflowed solder balls. During the preparation of the reflowed solder balls, different cooling rates were used in the range from 2.7 K/s to 14.7 K/s. After measuring the shear force and the Vickers hardness, the structures of the fracture surfaces and the intermetallic layer were investigated by SEM (Scanning Electron Microscopy). The mechanical property measurements showed lower shear force for the SAC0307-Mn07 alloy (20-25 N) compared with the SAC305 alloy (27-35 N), independent of the cooling rate. However, the SAC0307-Mn07 alloy was softer; its Vickers hardness was between 12 and 13 HV, whereas the Vickers hardness of the SAC305 alloy was between 19 and 20 HV. In addition, structural analyses revealed rougher intermetallic compound layers in the case of the SAC0307-Mn07 alloy, which can inhibit the propagation of cracks at the solder-substrate interface. These two properties of SAC0307-Mn07 alloy, the softer nature and the rougher intermetallic layer, might result in better thermomechanical behavior of the solder joints during the lifetime of electronic devices.

7.
Materials (Basel) ; 13(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098085

RESUMO

The effect of recrystallization of 99.3Sn-0.7Cu wt. % solder alloy on the allotropic transition of ß to α-Sn (so-called tin pest phenomenon) was investigated. Bulk samples were prepared, and an InSb inoculator was mechanically applied to their surfaces to enhance the transition. Half of the samples were used as the reference material and the other half were annealed at 180 °C for 72 h, which caused the recrystallization of the alloy. The samples were stored at -10 and -20 °C. The ß-Sn to α-Sn transition was monitored using electrical resistance measurements. The expansion and separation of the tin grains during the ß-Sn to α-Sn transition process were studied using scanning electron microscopy. The recrystallization of the alloy suppressed the tin pest phenomenon considerably since it decreased the number of defects in the crystal structure where heterogeneous nucleation of ß-Sn to α-Sn transition could occur. In the case of InSb inoculation, the spreading of the transition towards the bulk was as fast as the spreading parallel to the surface of the sample.

8.
Materials (Basel) ; 12(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684157

RESUMO

The effect of copper substrate roughness and tin layer thickness were investigated on whisker development in the case of Sn thin-films. Sn was vacuum-evaporated onto both unpolished and mechanically polished Cu substrates with 1 µm and 2 µm average layer thicknesses. The samples were stored in room conditions for 60 days. The considerable stress-developed by the rapid intermetallic layer formation-resulted in intensive whisker formation, even in some days after the layer deposition. The developed whiskers and the layer structure underneath them were investigated with both scanning electron microscopy and ion microscopy. The Sn thin-film deposited onto unpolished Cu substrate produced less but longer whiskers than that deposited onto polished Cu substrate. This phenomenon might be explained by the dependence of IML formation on the surface roughness of substrates. The formation of IML wedges is more likely on rougher Cu substrates than on polished ones. Furthermore, it was found that with the decrease of layer thickness, the development of nodule type whiskers increases due to the easier diffusion of other atoms into the whisker bodies.

9.
Rev Sci Instrum ; 89(6): 063114, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29960568

RESUMO

An improved contactless method of the measurement and evaluation of charge carrier profiles in polished wafers by infrared reflectance was developed. The sensitivity of optical reflectance to the incidence angle was theoretically analyzed. A grazing incident angle enhances sensitivity to doping profile parameters. At the same time, the sensitivity to experimental errors sharply increases around the Brewster angle. Therefore, the optimal angle of 65° was chosen. Experimental errors such as unintentional polarization of the measurement beam were minimized by division by reference spectra taken on an undoped sample and further by normalization to a fixed value in the region of 4000 cm-1 to 7000 cm-1. The carrier profile in boron-doped samples was parametrized by 3 parameters and that in phosphorous-doped samples was parametrized by 4 parameters, using additional empirically determined assumptions. As a physical model, the Drude equation is used with two parameters assumed to be concentration-dependent: relaxation time and contribution from band-to-band excitations. The model parameters were calibrated independently by infrared ellipsometry. The presented method gives results in satisfactory agreement with the profiles measured by the electrochemical capacitance-voltage method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA