Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Chem Biol ; 30(8): 879-892.e5, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37390831

RESUMO

CRISPR-based editing has revolutionized genome engineering despite the observation that many DNA sequences remain challenging to target. Unproductive interactions formed between the single guide RNA's (sgRNA) Cas9-binding scaffold domain and DNA-binding antisense domain are often responsible for such limited editing resolution. To bypass this limitation, we develop a functional SELEX (systematic evolution of ligands by exponential enrichment) approach, termed BLADE (binding and ligand activated directed evolution), to identify numerous, diverse sgRNA variants that bind Streptococcus pyogenes Cas9 and support DNA cleavage. These variants demonstrate surprising malleability in sgRNA sequence. We also observe that particular variants partner more effectively with specific DNA-binding antisense domains, yielding combinations with enhanced editing efficiencies at various target sites. Using molecular evolution, CRISPR-based systems could be created to efficiently edit even challenging DNA sequences making the genome more tractable to engineering. This selection approach will be valuable for generating sgRNAs with a range of useful activities.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , RNA , DNA/genética , DNA/metabolismo , Edição de Genes
2.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613334

RESUMO

Cycling cells must respond to DNA double-strand breaks (DSBs) to avoid genome instability. Missegregation of chromosomes with DSBs during mitosis results in micronuclei, aberrant structures linked to disease. How cells respond to DSBs during mitosis is incompletely understood. We previously showed that Drosophilamelanogaster papillar cells lack DSB checkpoints (as observed in many cancer cells). Here, we show that papillar cells still recruit early acting repair machinery (Mre11 and RPA3) and the Fanconi anemia (FA) protein Fancd2 to DSBs. These proteins persist as foci on DSBs as cells enter mitosis. Repair foci are resolved in a stepwise manner during mitosis. DSB repair kinetics depends on both monoubiquitination of Fancd2 and the alternative end-joining protein DNA polymerase θ. Disruption of either or both of these factors causes micronuclei after DNA damage, which disrupts intestinal organogenesis. This study reveals a mechanism for how cells with inactive DSB checkpoints can respond to DNA damage that persists into mitosis.


Assuntos
Quebra Cromossômica , Segregação de Cromossomos , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Testes Genéticos , Micronúcleo Germinativo/metabolismo , Mitose , Mutação/genética , Ubiquitinação , DNA Polimerase teta
3.
Mol Cancer Res ; 14(11): 1068-1077, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27621267

RESUMO

Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. IMPLICATIONS: The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR.


Assuntos
Neoplasias da Mama/induzido quimicamente , Transformação Celular Neoplásica/genética , DNA Polimerase beta/genética , Estrogênios/efeitos adversos , Mutação em Linhagem Germinativa , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Dano ao DNA , Reparo do DNA , Feminino , Predisposição Genética para Doença , Guanina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único
4.
Gene ; 512(1): 134-42, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23026212

RESUMO

Nescient helix-loop-helix-2 (NHLH2) is a basic helix-loop-helix transcription factor, which has been implicated, using mouse knockouts, in adult body weight regulation and fertility. A scan of the known single nucleotide polymorphisms (SNPs) in the NHLH2 gene revealed one in the 3' untranslated region (3'UTR), which lies within an AUUUA RNA stability motif. A second SNP is nonsynonymous within the coding region of NHLH2, and was found in a genome-wide association study for obesity. Both of these SNPs were examined for their effect on NLHL2 by creating mouse mimics and examining mRNA stability, and protein function in mouse hypothalamic cell lines. The 3'UTR SNP causes increased instability and, when the SNP-containing Nhlh2 3'UTR is attached to luciferase mRNA, reduced protein levels in cells. The nonsynonymous SNP at position 83 in the protein changes an alanine residue, conserved in NHLH2 orthologs through the Drosophila sp. to a proline residue. This change affects migration of the protein on an SDS-PAGE gel, and appears to alter secondary structure of the protein, as predicted using in silico methods. These results provide functional information on two rare human SNPs in the NHLH2 gene. One of these has been linked to human obese phenotypes, while the other is present in a relatively high proportion of individuals. Given their effects on NHLH2 protein levels, both SNPs deserve further analysis in whether they are causative and/or additive for human body weight and fertility phenotypes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Obesidade/genética , Fases de Leitura Aberta , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA