Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant Cell Environ ; 45(6): 1664-1681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147232

RESUMO

Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.


Assuntos
Populus , Árvores , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Populus/genética , Árvores/fisiologia , Pressão de Vapor , Água
2.
Am J Bot ; 108(8): 1343-1353, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415569

RESUMO

PREMISE: Plants rely on pools of internal nonstructural carbohydrates (NSCs: soluble sugars plus starch) to support metabolism, growth, and regrowth of tissues damaged from disturbance such as foliage herbivory. However, impacts of foliage herbivory on the quantity and composition of NSC pools in long-lived woody plants are currently unclear. We implemented a controlled defoliation experiment on mature Tamarix spp.-a dominant riparian woody shrub/tree that has evolved with intense herbivory pressure-to test two interrelated hypotheses: (1) Repeated defoliation disproportionately impacts aboveground versus belowground NSC storage. (2) Defoliation disproportionately impacts starch versus soluble sugar storage. METHODS: Hypotheses were tested by transplanting six Tamarix seedlings into each of eight cylinder mesocosms (2 m diameter, 1 m in depth). After 2.5 years, plants in four of the eight mesocosms were mechanically defoliated repeatedly over a single growing season, and all plants were harvested in the following spring. RESULTS: Defoliation had no impact on either above- or belowground soluble sugar pools. However, starch in defoliated plants dropped to 55% and 26% in stems and roots, respectively, relative to control plants, resulting in an over 2-fold higher soluble sugar to starch ratio in defoliated plants. CONCLUSIONS: The results suggest that defoliation occurring over a single growing season does not impact immediate plant functions such as osmoregulation, but depleted starch could limit future fitness, particularly where defoliation occurs over multiple years. These results improve our understanding of how woody plants cope with episodic defoliation caused by foliage herbivory and other disturbances.


Assuntos
Tamaricaceae , Folhas de Planta , Amido , Açúcares , Árvores
5.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661848

RESUMO

A history of allergies doubles the risk of vulvodynia-a chronic pain condition of unknown etiology often accompanied by increases in numbers of vulvar mast cells. We previously established the biological plausibility of this relationship in mouse models where repeated exposures to the allergens oxazolone or dinitrofluorobenzene on the labiar skin or inside the vaginal canal of ND4 Swiss Webster outbred mice led to persistent tactile sensitivity and local increases in mast cells. In these models, depletion of mast cells alleviated pain. While exposure to cleaning chemicals has been connected to elevated vulvodynia risk, no single agent has been linked to adverse outcomes. We sensitized female mice to methylisothiazolinone (MI)-a biocide preservative ubiquitous in cosmetics and cleaners-dissolved in saline on their flanks, and subsequently challenged them with MI or saline for ten consecutive days in the vaginal canal. MI-challenged mice developed persistent tactile sensitivity, increased vaginal mast cells and eosinophils, and had higher serum Immunoglobulin E. Therapeutic and preventive intra-vaginal administration of Δ9-tetrahydrocannabinol reduced mast cell accumulation and tactile sensitivity. MI is known to cause skin and airway irritation in humans, and here we provide the first pre-clinical evidence that repeated MI exposures can also provoke allergy-driven genital pain.


Assuntos
Cosméticos/toxicidade , Dermatite Alérgica de Contato/etiologia , Mastócitos/efeitos dos fármacos , Conservantes Farmacêuticos/toxicidade , Tiazóis/toxicidade , Vagina/efeitos dos fármacos , Alérgenos , Animais , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/epidemiologia , Dronabinol/uso terapêutico , Feminino , Humanos , Imunoglobulina E/sangue , Mastócitos/metabolismo , Camundongos , Mucosa , Dor/induzido quimicamente , Pele , Vagina/imunologia
6.
Oecologia ; 187(4): 921-931, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955993

RESUMO

Environmental changes have resulted in significant declines in native riparian forests that are comprised largely of dioecious tree taxa, including boxelder and iconic cottonwood/willow gallery forests. Dioecious species may be especially vulnerable to the effects of climate change given that they often exhibit skewed sex ratios that are reinforced by physiological and morphological specialization of each sex to specific microhabitats. A comprehensive data synthesis suggests that male individuals of boxelder and cottonwood taxa have a higher representation on dry microhabitats than females and are less physiologically sensitive to increased aridity than co-occurring females. Consequently, extreme male-biased sex ratios are possible under future climate conditions that could reduce population fitness below a sustainable threshold. Riparian willows, on the other hand, generally do not express obvious sexual dimorphism in habitat preference or physiological sensitivity to aridity. Thus, it is unclear whether climate change will impact population structure of willows in ways that parallel other dioecious riparian tree taxa. Future riparian tree restoration programs should aim to maintain future sex ratio balance that maximizes population fitness under projected hydro-climatological conditions. Recent advances in genomics will likely provide the critical tools for early sex determination in pre-reproductive trees across riparian tree species such that sex ratio balance could be targeted during initial stages of restoration, along with adaptations for drought tolerance and other key traits that are essential for survival under future conditions.


Assuntos
Mudança Climática , Árvores , Ecossistema , Caracteres Sexuais , Razão de Masculinidade
7.
Proc Natl Acad Sci U S A ; 115(12): 2912-2917, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507190

RESUMO

Cities are concentrated areas of CO2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO2 mole fractions from five sites across Utah's metropolitan Salt Lake Valley. We examine "excess" CO2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO2 trends to changes in emissions, since we did not find long-term trends in atmospheric mixing proxies. Three contrasting CO2 trends emerged across urban types: negative trends at a residential-industrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of population within the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO2, implying a nonlinear relationship with CO2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.

8.
Conserv Physiol ; 5(1): cox016, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852513

RESUMO

Patterns of woody-plant mortality have been linked to global-scale environmental changes, such as extreme drought, heat stress, more frequent and intense fires, and episodic outbreaks of insects and pathogens. Although many studies have focussed on survival and mortality in response to specific physiological stresses, little attention has been paid to the role of genetic heritability of traits and local adaptation in influencing patterns of plant mortality, especially in non-native species. Tamarix spp. is a dominant, non-native riparian tree in western North America that is experiencing dieback in some areas of its range due to episodic herbivory by the recently introduced northern tamarisk leaf beetle (Diorhabda carinulata). We propose that genotype × environment interactions largely underpin current and future patterns of Tamarix mortality. We anticipate that (i) despite its recent introduction, and the potential for significant gene flow, Tamarix in western North America is generally adapted to local environmental conditions across its current range in part due to hybridization of two species; (ii) local adaptation to specific climate, soil and resource availability will yield predictable responses to episodic herbivory; and (iii) the ability to cope with a combination of episodic herbivory and increased aridity associated with climate change will be largely based on functional tradeoffs in resource allocation. This review focusses on the potential heritability of plant carbon allocation patterns in Tamarix, focussing on the relative contribution of acquired carbon to non-structural carbohydrate (NSC) pools versus other sinks as the basis for surviving episodic disturbance. Where high aridity and/or poor edaphic position lead to chronic stress, NSC pools may fall below a minimum threshold because of an imbalance between the supply of carbon and its demand by various sinks. Identifying patterns of local adaptation of traits related to resource allocation will improve forecasting of Tamarix population susceptibility to episodic herbivory.

9.
Plant Cell ; 26(9): 3616-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25271240

RESUMO

Leaf shape is mutable, changing in ways modulated by both development and environment within genotypes. A complete model of leaf phenotype would incorporate the changes in leaf shape during juvenile-to-adult phase transitions and the ontogeny of each leaf. Here, we provide a morphometric description of >33,000 leaflets from a set of tomato (Solanum spp) introgression lines grown under controlled environment conditions. We first compare the shape of these leaves, arising during vegetative development, with >11,000 previously published leaflets from a field setting and >11,000 leaflets from wild tomato relatives. We then quantify the changes in shape, across ontogeny, for successive leaves in the heteroblastic series. Using principal component analysis, we then separate genetic effects modulating (1) the overall shape of all leaves versus (2) the shape of specific leaves in the series, finding the former more heritable than the latter and comparing quantitative trait loci regulating each. Our results demonstrate that phenotype is highly contextual and that unbiased assessments of phenotype, for quantitative genetic or other purposes, would ideally sample the many developmental and environmental factors that modulate it.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Evolução Biológica , Endogamia , Modelos Biológicos , Fenótipo , Análise de Componente Principal , Locos de Características Quantitativas/genética
10.
Methods Mol Biol ; 1062: 175-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24057366

RESUMO

One powerful approach to studying gene function is to analyze the phenotype of an organism carrying a mutant allele of a gene of interest. In order to use this experimental approach, one must have the ability to easily isolate individual organisms carrying desired mutations. A widely used method for accomplishing this task in plants and other organisms is a procedure called TILLING. A traditional TILLING project has at its foundation an ordered mutant population produced by treating seeds with a chemical mutagen. From this mutagenized seed, thousands of individual mutant lines are produced, and corresponding DNA samples are collected. For several plant species, publicly accessible screening facilities have been established that perform mutant screens on a gene-by-gene basis in response to customer requests using PCR and heteroduplex detection methods. The iTILLING method described in this chapter represents an individualized version of the TILLING process. Performing a traditional TILLING experiment requires a large investment in time and resources to establish the well-ordered mutant population. By contrast, iTILLING is a low-investment alternative that provides the individual research lab with a practical solution to mutation screening. The main difference between the two approaches is that iTILLING is not based on the establishment of a durable, organized mutant population. Instead, a system for growing Arabidopsis seedlings in 96-well plates is used to produce an ephemeral mutant population for screening. Because the intention is not to develop a long-term resource, a considerable savings in time and money is realized when using iTILLING as compared to traditional TILLING. iTILLING is not intended to serve as a replacement to traditional TILLING. Rather, iTILLING provides a strategy by which custom mutagenesis screens can be performed by individual labs using unique genetic backgrounds that are of specific interest to that research group.


Assuntos
Arabidopsis/genética , Estudos de Associação Genética/métodos , Técnicas de Cultura , Análise Mutacional de DNA , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Mutagênese , Fenótipo , Genética Reversa , Sementes/genética
11.
Plant Cell ; 25(5): 1895-910, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23695980

RESUMO

An Arabidopsis thaliana mitogen-activated protein (MAP) kinase cascade composed of MEKK1, MKK1/MKK2, and MPK4 was previously described as a negative regulator of defense response. MEKK1 encodes a MAP kinase kinase kinase and is a member of a tandemly duplicated gene family with MEKK2 and MEKK3. Using T-DNA insertion lines, we isolated a novel deletion mutant disrupting this gene family and found it to be phenotypically wild-type, in contrast with the mekk1 dwarf phenotype. Follow-up genetic analyses indicated that MEKK2 is required for the mekk1, mkk1 mkk2, and mpk4 autoimmune phenotypes. We next analyzed a T-DNA insertion in the MEKK2 promoter region and found that although it does not reduce the basal expression of MEKK2, it does prevent the upregulation of MEKK2 that is observed in mpk4 plants. This mekk2 allele can rescue the mpk4 autoimmune phenotype in a dosage-dependent manner. We also found that expression of constitutively active MPK4 restored MEKK2 abundance to wild-type levels in mekk1 mutant plants. Finally, using mass spectrometry, we showed that MEKK2 protein levels mirror MEKK2 mRNA levels. Taken together, our results indicate that activated MPK4 is responsible for regulating MEKK2 RNA abundance. In turn, the abundance of MEKK2 appears to be under cellular surveillance such that a modest increase can trigger defense response activation.


Assuntos
Proteínas de Arabidopsis/genética , MAP Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 2/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Arabidopsis/genética , DNA Bacteriano/genética , Resistência à Doença/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases/genética , Modelos Genéticos , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Vis Exp ; (57)2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22105217

RESUMO

It is becoming common for plant scientists to develop projects that require the genotyping of large numbers of plants. The first step in any genotyping project is to collect a tissue sample from each individual plant. The traditional approach to this task is to sample plants one-at-a-time. If one wishes to genotype hundreds or thousands of individuals, however, using this strategy results in a significant bottleneck in the genotyping pipeline. The Ice-Cap method that we describe here provides a high-throughput solution to this challenge by allowing one scientist to collect tissue from several thousand seedlings in a single day (1,2). This level of throughput is made possible by the fact that tissue is harvested from plants 96-at-a-time, rather than one-at-a-time. The Ice-Cap method provides an integrated platform for performing seedling growth, tissue harvest, and DNA extraction. The basis for Ice-Cap is the growth of seedlings in a stacked pair of 96-well plates. The wells of the upper plate contain plugs of agar growth media on which individual seedlings germinate. The roots grow down through the agar media, exit the upper plate through a hole, and pass into a lower plate containing water. To harvest tissue for DNA extraction, the water in the lower plate containing root tissue is rapidly frozen while the seedlings in the upper plate remain at room temperature. The upper plate is then peeled away from the lower plate, yielding one plate with 96 root tissue samples frozen in ice and one plate with 96 viable seedlings. The technique is named "Ice-Cap" because it uses ice to capture the root tissue. The 96-well plate containing the seedlings can then wrapped in foil and transferred to low temperature. This process suspends further growth of the seedlings, but does not affect their viability. Once genotype analysis has been completed, seedlings with the desired genotype can be transferred from the 96-well plate to soil for further propagation. We have demonstrated the utility of the Ice-Cap method using Arabidopsis thaliana, tomato, and rice seedlings. We expect that the method should also be applicable to other species of plants with seeds small enough to fit into the wells of 96-well plates.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Técnicas de Genotipagem/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , DNA de Plantas/química , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
Tree Physiol ; 30(12): 1545-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21112973

RESUMO

Thermal dissipation probes (the Granier method) are routinely used in forest ecology and water balance studies to estimate whole-tree transpiration. This method utilizes an empirically derived equation to measure sap flux density, which has been reported as independent of wood characteristics. However, errors in calculated sap flux density may occur when large gradients in sap velocity occur along the sensor length or when sensors are inserted into non-conducting wood. These may be conditions routinely associated with ring-porous species, yet there are few cases in which the original calibration has been validated for ring-porous species. We report results from laboratory calibration measurements conducted on excised stems of four ring-porous species and two diffuse-porous species. Our calibration results for ring-porous species were considerably different compared with the original calibration equation. Calibration equation coefficients obtained in this study differed by as much as two to almost three orders of magnitude when compared with the original equation of Granier. Coefficients also differed between ring-porous species across all pressure gradient conditions considered; however, no differences between calibration slopes were observed for data collected within the range of expected in situ pressure gradients. In addition, dye perfusions showed that in three of the four ring-porous species considered, active sapwood was limited to the outermost growth ring. In contrast, our calibration results for diffuse-porous species showed generally good agreement with the empirically derived Granier calibration, and dye perfusions showed that active sapwood was associated with many annual growth rings. Our results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibration coefficients may be associated with substantial error.


Assuntos
Árvores/fisiologia , Madeira/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal , Pressão , Temperatura , Água
14.
Plant Physiol ; 154(1): 25-35, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668060

RESUMO

TILLING (for Targeting Induced Local Lesions IN Genomes) is a well-established method for identifying plants carrying point mutations in genes of interest. A traditional TILLING project requires a significant investment of time and resources to establish the mutant population and screening infrastructure. Here, we describe a modified TILLING procedure that substantially reduces the investment needed to perform mutation screening. Our motivation for developing iTILLING was to make it practical for individual laboratories to rapidly perform mutation screens using specialized genetic backgrounds. With iTILLING, M2 seeds are collected in bulk from the mutagenized population of plants, greatly reducing the labor needed to manage the mutant lines. Growth of the M2 seedlings for mutation screening, tissue collection, and DNA extraction are all performed in 96-well format. Mutations are then identified using high-resolution melt-curve analysis of gene-specific polymerase chain reaction products. Individual plants carrying mutations of interest are transferred from the 96-well growth plates to soil. One scientist can complete an iTILLING screen in less than 4 months. As a proof-of-principle test, we applied iTILLING to Arabidopsis (Arabidopsis thaliana) plants that were homozygous for the mekk1-1 (for MAPK/ERK kinase kinase 1) mutation and also carried a MEKK1 rescue construct. The goal of our screen was to identify mutations in the closely linked MEKK2 and MEKK3 loci. We obtained five mutations in MEKK2 and seven mutations in MEKK3, all located within 20 kb of the mekk1-1 T-DNA insertion. Using repeated iterations of the iTILLING process, mutations in three or more tandemly duplicated genes could be generated.


Assuntos
Arabidopsis/genética , Engenharia Genética/métodos , Mutagênese/genética , Mutação/genética , Arabidopsis/enzimologia , DNA de Plantas/genética , Metanossulfonato de Etila , MAP Quinase Quinase Quinases/genética , Família Multigênica/genética , Desnaturação de Ácido Nucleico , Plântula/genética , Plântula/crescimento & desenvolvimento
15.
Oecologia ; 156(1): 13-20, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18270747

RESUMO

Plant transpiration is strongly constrained by hydraulic architecture, which determines the critical threshold for cavitation. Because species vary greatly in vulnerability to cavitation, hydraulic limits to transpiration and stomatal conductance have not generally been incorporated into ecological and climate models. We measured sap flow, leaf transpiration, and vulnerability to cavitation of a variety of tree species in a well-irrigated but semi-arid urban environment in order to evaluate the generality of stomatal responses to high atmospheric vapor pressure deficit (D). We found evidence of broad patterns of stomatal responses to humidity based on systematic differences in vulnerability to cavitation. Ring-porous taxa consistently had vulnerable xylem and showed strong regulation of transpiration in response to D, while diffuse-porous taxa were less vulnerable and transpiration increased nearly linearly with D. These results correspond well to patterns in the distribution of the taxa, such as the prevalence of diffuse-porous species in riparian ecosystems, and also provide a means of representing maximum transpiration rates at varying D in broad categories of trees.


Assuntos
Magnoliopsida/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Xilema/fisiologia , Pressão Atmosférica , Cidades , Umidade , Árvores , Utah , Madeira
16.
New Phytol ; 177(2): 558-568, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18028295

RESUMO

A centrifugal method is used to measure 'vulnerability curves' which show the loss of hydraulic conductivity in xylem by cavitation. Until recently, conductivity was measured between bouts of centrifugation using a gravity-induced head. Now, conductivity can be measured during centrifugation. This 'spin' method is faster than the 'gravity' technique, but correspondence between the two has not been evaluated. The two methods were compared on the same stem segments for two conifer, four diffuse-porous, and four ring-porous species. Only 17 of 60 conductivity measurements differed, with differences in the order of 10%. When different, the spin method gave higher conductivities at the beginning of the curve and lower at the end. Pressure at 50% loss of conductivity, and mean cavitation pressure, were the same in 14 of 20 comparisons. When different, the spin method averaged 0.32 MPa less negative. Ring-porous species showed a precipitous initial drop in conductivity by both techniques. This striking pattern was confirmed by the air-injection method and native embolism measurements. Close correspondence inspires confidence in both methods, each of which has unique advantages. The observation that ring-porous species operate at only a fraction of their potential conductivity at midday demands further study.


Assuntos
Centrifugação/métodos , Magnoliopsida/anatomia & histologia , Caules de Planta/anatomia & histologia , Traqueófitas/anatomia & histologia , Xilema/anatomia & histologia , Centrifugação/instrumentação
17.
J Exp Bot ; 58(8): 2181-91, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17519351

RESUMO

Loss-of-function, dominant-negative, and change-of-function genetic approaches were used to investigate the role played by the Arabidopsis mitogen-activated protein (MAP) kinase MPK6 throughout development. Plants homozygous for T-DNA null alleles of MPK6 displayed reduced male fertility and abnormal anther development. In addition, a portion of the seed produced by mpk6 plants was found to contain embryos that had burst out of their seed coats. To address potential functional redundancy, a dominant-negative version of MPK6 was constructed by changing the TEY activation loop motif to the amino acid sequence AEF. Plants expressing MPK6AEF via the MPK6 native promoter were found to produce excessive stomata, consistent with the recently described role of MPK6 in stomatal patterning. A novel floral phenotype characterized by abnormal sepal development was also observed in MPK6AEF lines. The gene expression pattern of the MPK6 native promoter was determined using a YFP-MPK6 fusion construct, and expression was observed throughout most plant tissues, consistent with a role for MPK6 in multiple developmental processes. The YFP-MPK6 construct was found to rescue the fertility phenotype of mpk6 null alleles, indicating that the fusion protein retains its biological activity. It was also observed, however, that plants expressing YFP-MPK6 displayed reduced apical dominance and a shortening of inflorescence internodes. These results suggest that the YFP tag modifies the activity of MPK6 in a manner that affects inflorescence development but not anther development. Taken together, the present results indicate that MPK6 is involved in the regulation of multiple aspects of plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Sementes/crescimento & desenvolvimento , Alelos , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/anatomia & histologia , Genes Reporter , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Infertilidade das Plantas/genética , Proteínas Recombinantes de Fusão/análise , Sementes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA