Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Cell Mol Life Sci ; 80(3): 75, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847916

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Células-Tronco Mesenquimais , Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Síndrome de Rett , Animais , Humanos , Ratos , Regiões 3' não Traduzidas , Adipogenia/genética , Regulação para Baixo/genética , Proteína 2 de Ligação a Metil-CpG/genética , MicroRNAs/genética
3.
Cell Tissue Res ; 390(1): 113-129, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35794391

RESUMO

Ciliary neurotrophic factor (CNTF) is a pleiotropic cytokine that signals through a receptor complex containing a specific subunit, CNTF receptor α (CNTFRα). The two molecules are constitutively expressed in key structures for human placental growth and differentiation. The possible role of CNTF in enhancing cell proliferation and/or invasion during placental development and remodelling was investigated using HTR-8/SVneo and BeWo cells, taken respectively as cytotrophoblast and syncytiotrophoblast models. In both cell lines, treatment with human recombinant (hr) CNTF activated JAK2/STAT3 signalling and inhibited the ERK pathway. Interestingly, in HTR-8/SVneo cells, 50 ng hrCNTF induced significant downregulation of matrix metalloprotease (MMP)-1 and significant upregulation of MMP-9. Moreover, pharmacological inhibition of JAK2/STAT3 signalling by AG490 and curcumin resulted in MMP-9 downregulation; it activated the ERK signalling pathway and upregulated MMP-1 expression. Collectively, these data suggest a role for CNTF signalling in extravillous cytotrophoblast invasion through the modulation of specific MMPs.


Assuntos
Fator Neurotrófico Ciliar , Curcumina , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Metaloproteinase 1 da Matriz , Metaloproteinase 9 da Matriz , Placenta/metabolismo , Placentação , Gravidez , Receptor do Fator Neutrófico Ciliar/metabolismo
4.
Biomedicines ; 10(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453634

RESUMO

Shwachman-Diamond syndrome (SDS) is one of the most commonly inherited bone marrow failure syndromes (IBMFS). In SDS, bone marrow is hypocellular, with marked neutropenia. Moreover, SDS patients have a high risk of developing myelodysplastic syndrome (MDS), which in turn increases the risk of acute myeloid leukemia (AML) from an early age. Most SDS patients are heterozygous for the c.183-184TA>CT (K62X) SBDS nonsense mutation. Fortunately, a plethora of translational read-through inducing drugs (TRIDs) have been developed and tested for several rare inherited diseases due to nonsense mutations so far. The authors previously demonstrated that ataluren (PTC124) can restore full-length SBDS protein expression in bone marrow stem cells isolated from SDS patients carrying the nonsense mutation K62X. In this study, the authors evaluated the effect of a panel of ataluren analogues in restoring SBDS protein resynthesis and function both in hematological and non-hematological SDS cells. Besides confirming that ataluren can efficiently induce SBDS protein re-expression in SDS cells, the authors found that another analogue, namely NV848, can restore full-length SBDS protein synthesis as well, showing very low toxicity in zebrafish. Furthermore, NV848 can improve myeloid differentiation in bone marrow hematopoietic progenitors, enhancing neutrophil maturation and reducing the number of dysplastic granulocytes in vitro. Therefore, these findings broaden the possibilities of developing novel therapeutic options in terms of nonsense mutation suppression for SDS. Eventually, this study may act as a proof of concept for the development of similar approaches for other IBMFS caused by nonsense mutations.

5.
Int J Mol Med ; 47(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576463

RESUMO

New approaches are being studied for the treatment of skin cancer. It has been reported that light combined with cisplatinum may be effective against skin cancer. In the present study, the effects of specific light radiations and cisplatinum on A431 cutaneous squamous cell carcinoma (cSCC) and HaCaT non­tumorigenic cell lines were investigated. Both cell lines were exposed to blue and red light sources for 3 days prior to cisplatinum treatment. Viability, apoptosis, cell cycle progression and apoptotic­related protein expression levels were investigated. The present results highlighted that combined treatment with blue light and cisplatinum was more effective in reducing cell viability compared with single treatments. Specifically, an increase in the apoptotic rate was observed when the cells were treated with blue light and cisplatinum, as compared to treatment with blue light or cisplatinum alone. Combined treatment with blue light and cisplatinum also caused cell cycle arrest at the S phase. Treatment with cisplatinum following light exposure induced the expression of apoptotic proteins in the A431 and HaCaT cell lines, which tended to follow different apoptotic mechanisms. On the whole, these data indicate that blue light combined with cisplatinum may be a promising treatment for cSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacologia , Luz , Neoplasias Cutâneas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT , Humanos , Fase S/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA