Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Nat Commun ; 14(1): 6802, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935687

RESUMO

European-ancestry populations are recognized as stratified but not as admixed, implying that residual confounding by locus-specific ancestry can affect studies of association, polygenic adaptation, and polygenic risk scores. We integrate individual-level genome-wide data from ~19,000 European-ancestry individuals across 79 European populations and five European American cohorts. We generate a new reference panel that captures ancestral diversity missed by both the 1000 Genomes and Human Genome Diversity Projects. Both Europeans and European Americans are admixed at the subcontinental level, with admixture dates differing among subgroups of European Americans. After adjustment for both genome-wide and locus-specific ancestry, associations between a highly differentiated variant in LCT (rs4988235) and height or LDL-cholesterol were confirmed to be false positives whereas the association between LCT and body mass index was genuine. We provide formal evidence of subcontinental admixture in individuals with European ancestry, which, if not properly accounted for, can produce spurious results in genetic epidemiology studies.


Assuntos
População Europeia , Genética Populacional , Humanos , População Europeia/genética , Epidemiologia Molecular
2.
Nat Comput Sci ; 3(7): 621-629, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37600116

RESUMO

Characterizing the genetic structure of large cohorts has become increasingly important as genetic studies extend to massive, increasingly diverse biobanks. Popular methods decompose individual genomes into fractional cluster assignments with each cluster representing a vector of DNA variant frequencies. However, with rapidly increasing biobank sizes, these methods have become computationally intractable. Here we present Neural ADMIXTURE, a neural network autoencoder that follows the same modeling assumptions as the current standard algorithm, ADMIXTURE, while reducing the compute time by orders of magnitude surpassing even the fastest alternatives. One month of continuous compute using ADMIXTURE can be reduced to just hours with Neural ADMIXTURE. A multi-head approach allows Neural ADMIXTURE to offer even further acceleration by calculating multiple cluster numbers in a single run. Furthermore, the models can be stored, allowing cluster assignment to be performed on new data in linear time without needing to share the training samples.

3.
Nat Commun ; 14(1): 4641, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582830

RESUMO

The indigenous population of the Canary Islands, which colonized the archipelago around the 3rd century CE, provides both a window into the past of North Africa and a unique model to explore the effects of insularity. We generate genome-wide data from 40 individuals from the seven islands, dated between the 3rd-16rd centuries CE. Along with components already present in Moroccan Neolithic populations, the Canarian natives show signatures related to Bronze Age expansions in Eurasia and trans-Saharan migrations. The lack of gene flow between islands and constant or decreasing effective population sizes suggest that populations were isolated. While some island populations maintained relatively high genetic diversity, with the only detected bottleneck coinciding with the colonization time, other islands with fewer natural resources show the effects of insularity and isolation. Finally, consistent genetic differentiation between eastern and western islands points to a more complex colonization process than previously thought.


Assuntos
Deriva Genética , Genômica , Humanos , Espanha , África do Norte , Povos Indígenas , Ilhas , Variação Genética , Genética Populacional
4.
Pac Symp Biocomput ; 28: 181-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540975

RESUMO

The following sections are included: Overview, Equitable risk prediction, Pharmacoequity, Race, genetic ancestry, and population structure, Conclusion, Acknowledgments, References.


Assuntos
Biologia Computacional , Medicina de Precisão , Humanos
5.
Hum Genomics ; 16(1): 37, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076307

RESUMO

INTRODUCTION: A major challenge to enabling precision health at a global scale is the bias between those who enroll in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial provider network, without the ability for the scientific community to either access or validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data sources and applies learnings to common chronic disease conditions including Type 2 diabetes (T2D) and hypertension. METHODS: We collected genotyped data from a novel DTC platform where participants upload their genotype data files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 6 months. Quality control, imputation, and genome-wide association studies were performed on this dataset, and polygenic risk scores were built in a case-control setting using the BASIL algorithm. RESULTS: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants showing identical effect direction to previously reported genome-significant findings in Europeans. Performance metric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger datasets including clinical biomarkers. DISCUSSION: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism for scaling precision health care delivery beyond the small number of countries who can afford to finance these efforts directly. CONCLUSIONS: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic landscape so that informed, timely clinical interventions can be incorporated.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensão , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Herança Multifatorial/genética , Fenótipo , Medicina de Precisão , Fatores de Risco
6.
PLoS Comput Biol ; 18(8): e1010301, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007005

RESUMO

The estimation of genetic clusters using genomic data has application from genome-wide association studies (GWAS) to demographic history to polygenic risk scores (PRS) and is expected to play an important role in the analyses of increasingly diverse, large-scale cohorts. However, existing methods are computationally-intensive, prohibitively so in the case of nationwide biobanks. Here we explore Archetypal Analysis as an efficient, unsupervised approach for identifying genetic clusters and for associating individuals with them. Such unsupervised approaches help avoid conflating socially constructed ethnic labels with genetic clusters by eliminating the need for exogenous training labels. We show that Archetypal Analysis yields similar cluster structure to existing unsupervised methods such as ADMIXTURE and provides interpretative advantages. More importantly, we show that since Archetypal Analysis can be used with lower-dimensional representations of genetic data, significant reductions in computational time and memory requirements are possible. When Archetypal Analysis is run in such a fashion, it takes several orders of magnitude less compute time than the current standard, ADMIXTURE. Finally, we demonstrate uses ranging across datasets from humans to canids.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Genética Populacional , Genoma , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética
7.
Science ; 377(6601): 72-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771911

RESUMO

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Assuntos
DNA Antigo , DNA Mitocondrial , Migração Humana , Povo Asiático/genética , Criança , DNA Mitocondrial/genética , Feminino , História Antiga , Migração Humana/história , Humanos , Masculino , Micronésia , Oceania
8.
Am J Hum Genet ; 109(6): 1117-1139, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35588731

RESUMO

Preeclampsia is a multi-organ complication of pregnancy characterized by sudden hypertension and proteinuria that is among the leading causes of preterm delivery and maternal morbidity and mortality worldwide. The heterogeneity of preeclampsia poses a challenge for understanding its etiology and molecular basis. Intriguingly, risk for the condition increases in high-altitude regions such as the Peruvian Andes. To investigate the genetic basis of preeclampsia in a population living at high altitude, we characterized genome-wide variation in a cohort of preeclamptic and healthy Andean families (n = 883) from Puno, Peru, a city located above 3,800 meters of altitude. Our study collected genomic DNA and medical records from case-control trios and duos in local hospital settings. We generated genotype data for 439,314 SNPs, determined global ancestry patterns, and mapped associations between genetic variants and preeclampsia phenotypes. A transmission disequilibrium test (TDT) revealed variants near genes of biological importance for placental and blood vessel function. The top candidate region was found on chromosome 13 of the fetal genome and contains clotting factor genes PROZ, F7, and F10. These findings provide supporting evidence that common genetic variants within coagulation genes play an important role in preeclampsia. A selection scan revealed a potential adaptive signal around the ADAM12 locus on chromosome 10, implicated in pregnancy disorders. Our discovery of an association in a functional pathway relevant to pregnancy physiology in an understudied population of Native American origin demonstrates the increased power of family-based study design and underscores the importance of conducting genetic research in diverse populations.


Assuntos
Pré-Eclâmpsia , Altitude , Fatores de Coagulação Sanguínea , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Fator VII/genética , Fator X/genética , Feminino , Humanos , Peru/epidemiologia , Placenta , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Gravidez
9.
Genome Med ; 14(1): 6, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039090

RESUMO

BACKGROUND: Identification of clinically significant genetic alterations involved in human disease has been dramatically accelerated by developments in next-generation sequencing technologies. However, the infrastructure and accessible comprehensive curation tools necessary for analyzing an individual patient genome and interpreting genetic variants to inform healthcare management have been lacking. RESULTS: Here we present the ClinGen Variant Curation Interface (VCI), a global open-source variant classification platform for supporting the application of evidence criteria and classification of variants based on the ACMG/AMP variant classification guidelines. The VCI is among a suite of tools developed by the NIH-funded Clinical Genome Resource (ClinGen) Consortium and supports an FDA-recognized human variant curation process. Essential to this is the ability to enable collaboration and peer review across ClinGen Expert Panels supporting users in comprehensively identifying, annotating, and sharing relevant evidence while making variant pathogenicity assertions. To facilitate evidence-based improvements in human variant classification, the VCI is publicly available to the genomics community. Navigation workflows support users providing guidance to comprehensively apply the ACMG/AMP evidence criteria and document provenance for asserting variant classifications. CONCLUSIONS: The VCI offers a central platform for clinical variant classification that fills a gap in the learning healthcare system, facilitates widespread adoption of standards for clinical curation, and is available at https://curation.clinicalgenome.org.


Assuntos
Variação Genética , Genoma Humano , Humanos , Testes Genéticos , Genômica
10.
Am J Hum Genet ; 108(12): 2354-2367, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34822764

RESUMO

Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Modelos Genéticos , Teorema de Bayes , Feminino , Humanos , Masculino , Fenótipo
11.
Nature ; 597(7877): 522-526, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552258

RESUMO

Polynesia was settled in a series of extraordinary voyages across an ocean spanning one third of the Earth1, but the sequences of islands settled remain unknown and their timings disputed. Currently, several centuries separate the dates suggested by different archaeological surveys2-4. Here, using genome-wide data from merely 430 modern individuals from 21 key Pacific island populations and novel ancestry-specific computational analyses, we unravel the detailed genetic history of this vast, dispersed island network. Our reconstruction of the branching Polynesian migration sequence reveals a serial founder expansion, characterized by directional loss of variants, that originated in Samoa and spread first through the Cook Islands (Rarotonga), then to the Society (Totaiete ma) Islands (11th century), the western Austral (Tuha'a Pae) Islands and Tuamotu Archipelago (12th century), and finally to the widely separated, but genetically connected, megalithic statue-building cultures of the Marquesas (Te Henua 'Enana) Islands in the north, Raivavae in the south, and Easter Island (Rapa Nui), the easternmost of the Polynesian islands, settled in approximately AD 1200 via Mangareva.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Feminino , História Medieval , Humanos , Masculino , Polinésia
12.
J Biomed Inform ; 113: 103664, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359113

RESUMO

OBJECTIVE: Pediatric acute-onset neuropsychiatric syndrome (PANS) is a complex neuropsychiatric syndrome characterized by an abrupt onset of obsessive-compulsive symptoms and/or severe eating restrictions, along with at least two concomitant debilitating cognitive, behavioral, or neurological symptoms. A wide range of pharmacological interventions along with behavioral and environmental modifications, and psychotherapies have been adopted to treat symptoms and underlying etiologies. Our goal was to develop a data-driven approach to identify treatment patterns in this cohort. MATERIALS AND METHODS: In this cohort study, we extracted medical prescription histories from electronic health records. We developed a modified dynamic programming approach to perform global alignment of those medication histories. Our approach is unique since it considers time gaps in prescription patterns as part of the similarity strategy. RESULTS: This study included 43 consecutive new-onset pre-pubertal patients who had at least 3 clinic visits. Our algorithm identified six clusters with distinct medication usage history which may represent clinician's practice of treating PANS of different severities and etiologies i.e., two most severe groups requiring high dose intravenous steroids; two arthritic or inflammatory groups requiring prolonged nonsteroidal anti-inflammatory drug (NSAID); and two mild relapsing/remitting group treated with a short course of NSAID. The psychometric scores as outcomes in each cluster generally improved within the first two years. DISCUSSION AND CONCLUSION: Our algorithm shows potential to improve our knowledge of treatment patterns in the PANS cohort, while helping clinicians understand how patients respond to a combination of drugs.


Assuntos
Doenças Autoimunes , Transtorno Obsessivo-Compulsivo , Infecções Estreptocócicas , Criança , Estudos de Coortes , Humanos , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Prescrições
14.
medRxiv ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766602

RESUMO

During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.

15.
Nature ; 583(7817): 572-577, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641827

RESUMO

The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia.


Assuntos
Fluxo Gênico/genética , Genoma Humano/genética , Migração Humana/história , Indígenas Centro-Americanos/genética , Indígenas Sul-Americanos/genética , Ilhas , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , América Central/etnologia , Colômbia/etnologia , Europa (Continente)/etnologia , Genética Populacional , História Medieval , Humanos , Polimorfismo de Nucleotídeo Único/genética , Polinésia , América do Sul/etnologia , Fatores de Tempo
16.
PLoS One ; 15(6): e0234647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569327

RESUMO

Unstructured clinical narratives are continuously being recorded as part of delivery of care in electronic health records, and dedicated tagging staff spend considerable effort manually assigning clinical codes for billing purposes. Despite these efforts, however, label availability and accuracy are both suboptimal. In this retrospective study, we aimed to automate the assignment of top-level International Classification of Diseases version 9 (ICD-9) codes to clinical records from human and veterinary data stores using minimal manual labor and feature curation. Automating top-level annotations could in turn enable rapid cohort identification, especially in a veterinary setting. To this end, we trained long short-term memory (LSTM) recurrent neural networks (RNNs) on 52,722 human and 89,591 veterinary records. We investigated the accuracy of both separate-domain and combined-domain models and probed model portability. We established relevant baseline classification performances by training Decision Trees (DT) and Random Forests (RF). We also investigated whether transforming the data using MetaMap Lite, a clinical natural language processing tool, affected classification performance. We showed that the LSTM-RNNs accurately classify veterinary and human text narratives into top-level categories with an average weighted macro F1 score of 0.74 and 0.68 respectively. In the "neoplasia" category, the model trained on veterinary data had a high validation accuracy in veterinary data and moderate accuracy in human data, with F1 scores of 0.91 and 0.70 respectively. Our LSTM method scored slightly higher than that of the DT and RF models. The use of LSTM-RNN models represents a scalable structure that could prove useful in cohort identification for comparative oncology studies. Digitization of human and veterinary health information will continue to be a reality, particularly in the form of unstructured narratives. Our approach is a step forward for these two domains to learn from and inform one another.


Assuntos
Mineração de Dados , Medicina Narrativa , Software , Animais , Automação , Bases de Dados como Assunto , Humanos , Reprodutibilidade dos Testes , Especificidade da Espécie
17.
Am J Hum Genet ; 107(1): 72-82, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32504544

RESUMO

Genetics researchers and clinical professionals rely on diversity measures such as race, ethnicity, and ancestry (REA) to stratify study participants and patients for a variety of applications in research and precision medicine. However, there are no comprehensive, widely accepted standards or guidelines for collecting and using such data in clinical genetics practice. Two NIH-funded research consortia, the Clinical Genome Resource (ClinGen) and Clinical Sequencing Evidence-generating Research (CSER), have partnered to address this issue and report how REA are currently collected, conceptualized, and used. Surveying clinical genetics professionals and researchers (n = 448), we found heterogeneity in the way REA are perceived, defined, and measured, with variation in the perceived importance of REA in both clinical and research settings. The majority of respondents (>55%) felt that REA are at least somewhat important for clinical variant interpretation, ordering genetic tests, and communicating results to patients. However, there was no consensus on the relevance of REA, including how each of these measures should be used in different scenarios and what information they can convey in the context of human genetics. A lack of common definitions and applications of REA across the precision medicine pipeline may contribute to inconsistencies in data collection, missing or inaccurate classifications, and misleading or inconclusive results. Thus, our findings support the need for standardization and harmonization of REA data collection and use in clinical genetics and precision health research.


Assuntos
Coleta de Dados/normas , Testes Genéticos/normas , Adulto , Criança , Etnicidade , Feminino , Variação Genética/genética , Genômica/normas , Humanos , Masculino , Medicina de Precisão/normas , Proibitinas , Inquéritos e Questionários
18.
Biol Res ; 53(1): 15, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299502

RESUMO

BACKGROUND: Current South American populations trace their origins mainly to three continental ancestries, i.e. European, Amerindian and African. Individual variation in relative proportions of each of these ancestries may be confounded with socio-economic factors due to population stratification. Therefore, ancestry is a potential confounder variable that should be considered in epidemiologic studies and in public health plans. However, there are few studies that have assessed the ancestry of the current admixed Chilean population. This is partly due to the high cost of genome-scale technologies commonly used to estimate ancestry. In this study we have designed a small panel of SNPs to accurately assess ancestry in the largest sampling to date of the Chilean mestizo population (n = 3349) from eight cities. Our panel is also able to distinguish between the two main Amerindian components of Chileans: Aymara from the north and Mapuche from the south. RESULTS: A panel of 150 ancestry-informative markers (AIMs) of SNP type was selected to maximize ancestry informativeness and genome coverage. Of these, 147 were successfully genotyped by KASPar assays in 2843 samples, with an average missing rate of 0.012, and a 0.95 concordance with microarray data. The ancestries estimated with the panel of AIMs had relative high correlations (0.88 for European, 0.91 for Amerindian, 0.70 for Aymara, and 0.68 for Mapuche components) with those obtained with AXIOM LAT1 array. The country's average ancestry was 0.53 ± 0.14 European, 0.04 ± 0.04 African, and 0.42 ± 0.14 Amerindian, disaggregated into 0.18 ± 0.15 Aymara and 0.25 ± 0.13 Mapuche. However, Mapuche ancestry was highest in the south (40.03%) and Aymara in the north (35.61%) as expected from the historical location of these ethnic groups. We make our results available through an online app and demonstrate how it can be used to adjust for ancestry when testing association between incidence of a disease and nongenetic risk factors. CONCLUSIONS: We have conducted the most extensive sampling, across many different cities, of current Chilean population. Ancestry varied significantly by latitude and human development. The panel of AIMs is available to the community for estimating ancestry at low cost in Chileans and other populations with similar ancestry.


Assuntos
Etnicidade/genética , Genética Populacional/organização & administração , Indígenas Sul-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Grupos Populacionais/genética , Chile , Feminino , Frequência do Gene/genética , Marcadores Genéticos/genética , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Filogeografia , Saliva
19.
Front Physiol ; 11: 624677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536943

RESUMO

Hibernation is a physiological and behavioral phenotype that minimizes energy expenditure. Hibernators cycle between profound depression and rapid hyperactivation of multiple physiological processes, challenging our concept of mammalian homeostasis. How the hibernator orchestrates and survives these extremes while maintaining cell to organismal viability is unknown. Here, we enhance the genome integrity and annotation of a model hibernator, the 13-lined ground squirrel. Our new assembly brings this genome to near chromosome-level contiguity and adds thousands of previously unannotated genes. These new genomic resources were used to identify 6,505 hibernation-related, differentially-expressed and processed transcripts using RNA-seq data from three brain regions in animals whose physiological status was precisely defined using body temperature telemetry. A software tool, squirrelBox, was developed to foster further data analyses and visualization. SquirrelBox includes a comprehensive toolset for rapid visualization of gene level and cluster group dynamics, sequence scanning of k-mer and domains, and interactive exploration of gene lists. Using these new tools and data, we deconvolute seasonal from temperature-dependent effects on the brain transcriptome during hibernation for the first time, highlighting the importance of carefully timed samples for studies of differential gene expression in hibernation. The identified genes include a regulatory network of RNA binding proteins that are dynamic in hibernation along with the composition of the RNA pool. In addition to passive effects of temperature, we provide evidence for regulated transcription and RNA turnover during hibernation. Significant alternative splicing, largely temperature dependent, also occurs during hibernation. These findings form a crucial first step and provide a roadmap for future work toward defining novel mechanisms of tissue protection and metabolic depression that may 1 day be applied toward improving human health.

20.
Mol Biol Evol ; 37(4): 994-1006, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848607

RESUMO

Native American genetic variation remains underrepresented in most catalogs of human genome sequencing data. Previous genotyping efforts have revealed that Mexico's Indigenous population is highly differentiated and substructured, thus potentially harboring higher proportions of private genetic variants of functional and biomedical relevance. Here we have targeted the coding fraction of the genome and characterized its full site frequency spectrum by sequencing 76 exomes from five Indigenous populations across Mexico. Using diffusion approximations, we modeled the demographic history of Indigenous populations from Mexico with northern and southern ethnic groups splitting 7.2 KYA and subsequently diverging locally 6.5 and 5.7 KYA, respectively. Selection scans for positive selection revealed BCL2L13 and KBTBD8 genes as potential candidates for adaptive evolution in Rarámuris and Triquis, respectively. BCL2L13 is highly expressed in skeletal muscle and could be related to physical endurance, a well-known phenotype of the northern Mexico Rarámuri. The KBTBD8 gene has been associated with idiopathic short stature and we found it to be highly differentiated in Triqui, a southern Indigenous group from Oaxaca whose height is extremely low compared to other Native populations.


Assuntos
Adaptação Biológica/genética , Indígena Americano ou Nativo do Alasca/genética , Evolução Molecular , Variação Genética , Exoma , Humanos , México , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA