Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998375

RESUMO

In this research, the results of an experimental study on the use of three alternative components for creating artificial aggregates (AAs) (granules) and their usage in 3D-printed concrete (3DPC) are examined. This study combines AAs made from organic components like hemp shives (HSs), pyrolyzed coal (charcoal), waste/municipal solid waste incinerator bottom slag (BS), and a mix of a reference 3DPC with the aforementioned AAs. Particularly, to enhance these properties to make low-carbon 3DPC, in this research, the potential of using AAs as lightweight aggregates was increased to 14% in terms of the mass of the concrete. Each mix was tested in terms of its printability via a preliminary test in a 3D printing laboratory. For an additional comparison with the aforementioned cases, 3DPC was mixed with unprocessed hemp shives, charcoal, and BS. Furthermore, their strength was measured at 28 days, and lastly, their durability parameters and shrinkage were experimentally investigated. Cross-sections of the fragments were studied under a scanning electron microscope. In this study, we achieved improvements in the mechanical properties of AAs for their development and implementation as an innovative way to reduce carbon in 3DPC.

2.
Materials (Basel) ; 16(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37297179

RESUMO

This study investigates the possibility of utilising bottom slag (BS) waste from landfills, and a carbonation process advantageous for the use of artificial aggregates (AAs) in printed three-dimensional (3D) concrete composites. In general, the main idea of granulated aggregates is to reduce the amount of CO2 emissions of printed 3D concrete objects (wall). AAs are made from construction materials, both granulated and carbonated. Granules are made from a combination of binder (ordinary Portland cement (OPC), hydrated lime, burnt shale ash (BSA)) and waste material (BS). BS is a waste material left over after the municipal waste burning process in cogeneration power plants. Whole printed 3D concrete composite manufacturing consists of: granulating artificial aggregate, aggregate hardening and sieving (adaptive granulometer), carbonation of AA, mixing 3D concrete, and 3D printing. The granulating and printing processes were analysed for hardening processes, strength results, workability parameters, and physical and mechanical properties. Printings with no granules (reference 3D printed concrete) were compared to 3D printed concretes with 25% and 50% of their natural aggregate replaced with carbonated AA. The results showed that, theoretically, the carbonation process could help to react approximately 126 kg/m3 CO2 from 1 m3 of granules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA