Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 9(15): 8829-8839, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410283

RESUMO

Migration evolved as a behavior to enhance fitness through exploiting spatially and temporally variable resources and avoiding predation or other threats. Globally, landscape alterations have resulted in declines to migratory populations across taxa. Given the long time periods over which migrations evolved in native systems, it is unlikely that restored populations embody the same migratory complexity that existed before population reductions or regional extirpation.We used GPS location data collected from 209 female bighorn sheep (Ovis canadensis) to characterize population and individual migration patterns along elevation and geographic continuums for 18 populations of bighorn sheep with different management histories (i.e., restored, augmented, and native) across the western United States.Individuals with resident behaviors were present in all management histories. Elevational migrations were the most common population-level migratory behavior. There were notable differences in the degree of individual variation within a population across the three management histories. Relative to native populations, restored and augmented populations had less variation among individuals with respect to elevation and geographic migration distances. Differences in migratory behavior were most pronounced for geographic distances, where the majority of native populations had a range of variation that was 2-4 times greater than restored or augmented populations. Synthesis and applications. Migrations within native populations include a variety of patterns that translocation efforts have not been able to fully recreate within restored and augmented populations. Theoretical and empirical research has highlighted the benefits of migratory diversity in promoting resilience and population stability. Limited migratory diversity may serve as an additional factor limiting demographic performance and range expansion. We suggest preserving native systems with intact migratory portfolios and a more nuanced approach to restoration and augmentation in which source populations are identified based on a suite of criteria that includes matching migratory patterns of source populations with local landscape attributes.

2.
PLoS One ; 13(11): e0207780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475861

RESUMO

Respiratory disease caused by Mycoplasma ovipneumoniae and Pasteurellaceae poses a formidable challenge for bighorn sheep (Ovis canadensis) conservation. All-age epizootics can cause 10-90% mortality and are typically followed by multiple years of enzootic disease in lambs that hinders post-epizootic recovery of populations. The relative frequencies at which these epizootics are caused by the introduction of novel pathogens or expression of historic pathogens that have become resident in the populations is unknown. Our primary objectives were to determine how commonly the pathogens associated with respiratory disease are hosted by bighorn sheep populations and assess demographic characteristics of populations with respect to the presence of different pathogens. We sampled 22 bighorn sheep populations across Montana and Wyoming, USA for Mycoplasma ovipneumoniae and Pasteurellaceae and used data from management agencies to characterize the disease history and demographics of these populations. We tested for associations between lamb:ewe ratios and the presence of different respiratory pathogen species. All study populations hosted Pasteurellaceae and 17 (77%) hosted Mycoplasma ovipneumoniae. Average lamb:ewe ratios for individual populations where both Mycoplasma ovipneumoniae and Pasteurellaceae were detected ranged from 0.14 to 0.40. However, average lamb:ewe ratios were higher in populations where Mycoplasma ovipneumoniae was not detected (0.37, 95% CI: 0.27-0.51) than in populations where it was detected (0.25, 95% CI: 0.21-0.30). These findings suggest that respiratory pathogens are commonly hosted by bighorn sheep populations and often reduce recruitment rates; however ecological factors may interact with the pathogens to determine population-level effects. Elucidation of such factors could provide insights for management approaches that alleviate the effects of respiratory pathogens in bighorn sheep. Nevertheless, minimizing the introduction of novel pathogens from domestic sheep and goats remains imperative to bighorn sheep conservation.


Assuntos
Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/isolamento & purificação , Sistema Respiratório/microbiologia , Carneiro da Montanha/microbiologia , Animais , Conservação dos Recursos Naturais , Mycoplasma ovipneumoniae/fisiologia , Pasteurellaceae/fisiologia , Probabilidade
3.
J Wildl Dis ; 54(4): 852-858, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902131

RESUMO

In contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species. We characterized resident pathogen communities across a range of mountain goat populations as an initial step to inform management efforts. Between 2010 and 2017, we sampled 98 individuals within three regions of the Greater Yellowstone Area (GYA), with a smaller sampling effort in southeast Alaska, US. Within the GYA, we detected Mycoplasma ovipneumoniae in two regions and we found at least two Pasteurellaceae species in animals from all regions. Mannheimia haemolytica was the only pathogen that we detected in southeast Alaska. Given the difficult sampling conditions, limited sample size, and imperfect detection, our failure to detect specific pathogens should be interpreted with caution. Nonetheless, respiratory pathogens within the GYA may be an important, yet underappreciated, cause of mountain goat mortality. Moreover, because of the strong niche overlap of bighorn sheep and mountain goats, interspecific transmission is an important concern for managers restoring or introducing mountain ungulates within sympatric ranges.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/veterinária , Infecções Respiratórias/veterinária , Ruminantes/microbiologia , Animais , Bactérias/classificação , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Estados Unidos/epidemiologia
4.
PLoS One ; 12(7): e0180689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708832

RESUMO

Respiratory disease has been a persistent problem for the recovery of bighorn sheep (Ovis canadensis), but has uncertain etiology. The disease has been attributed to several bacterial pathogens including Mycoplasma ovipneumoniae and Pasteurellaceae pathogens belonging to the Mannheimia, Bibersteinia, and Pasteurella genera. We estimated detection probability for these pathogens using protocols with diagnostic tests offered by a fee-for-service laboratory and not offered by a fee-for-service laboratory. We conducted 2861 diagnostic tests on swab samples collected from 476 bighorn sheep captured across Montana and Wyoming to gain inferences regarding detection probability, pathogen prevalence, and the power of different sampling methodologies to detect pathogens in bighorn sheep populations. Estimated detection probability using fee-for-service protocols was less than 0.50 for all Pasteurellaceae and 0.73 for Mycoplasma ovipneumoniae. Non-fee-for-service Pasteurellaceae protocols had higher detection probabilities, but no single protocol increased detection probability of all Pasteurellaceae pathogens to greater than 0.50. At least one protocol resulted in an estimated detection probability of 0.80 for each pathogen except Mannheimia haemolytica, for which the highest detection probability was 0.45. In general, the power to detect Pasteurellaceae pathogens at low prevalence in populations was low unless many animals were sampled or replicate samples were collected per animal. Imperfect detection also resulted in low precision when estimating prevalence for any pathogen. Low and variable detection probabilities for respiratory pathogens using live-sampling protocols may lead to inaccurate conclusions regarding pathogen community dynamics and causes of bighorn sheep respiratory disease epizootics. We recommend that agencies collect multiples samples per animal for Pasteurellaceae detection, and one sample for Mycoplasma ovipneumoniae detection from at least 30 individuals to reliably detect both Pasteurellaceae and Mycoplasma ovipneumoniae at the population-level. Availability of PCR diagnostic tests to wildlife management agencies would improve the ability to reliably detect Pasteurellaceae in bighorn sheep populations.


Assuntos
Infecções Respiratórias/diagnóstico , Doenças dos Ovinos/diagnóstico , Animais , DNA Bacteriano/metabolismo , Mycoplasma ovipneumoniae/genética , Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/genética , Pasteurellaceae/isolamento & purificação , Densidade Demográfica , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Carneiro da Montanha , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA