RESUMO
Direct interactions between receptors at the neuronal surface have long been proposed to tune signaling cascades and neuronal communication in health and disease. Yet, the lack of direct investigation methods to measure, in live neurons, the interaction between different membrane receptors at the single molecule level has raised unanswered questions on the biophysical properties and biological roles of such receptor interactome. Using a multidimensional spectral single molecule-localization microscopy (MS-SMLM) approach, we monitored the interaction between two membrane receptors, i.e. glutamatergic NMDA (NMDAR) and G protein-coupled dopamine D1 (D1R) receptors. The transient interaction was randomly observed along the dendritic tree of hippocampal neurons. It was higher early in development, promoting the formation of NMDAR-D1R complexes in an mGluR5- and CK1-dependent manner, favoring NMDAR clusters and synaptogenesis in a dopamine receptor signaling-independent manner. Preventing the interaction in the neonate, and not adult, brain alters in vivo spontaneous neuronal network activity pattern in male mice. Thus, a weak and transient interaction between NMDAR and D1R plays a structural and functional role in the developing brain.
Assuntos
N-Metilaspartato , Receptores de Dopamina D1 , Camundongos , Animais , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismoRESUMO
OBJECTIVES: Work is an under-recognized social determinant of health. There is limited research describing US wildland firefighter (WFF) workforce demographics or how to work associates with WFF health behaviors. In this study researchers characterized a WFF cohort and tested hypotheses that WFFs used tobacco, alcohol, and sugar-sweetened beverages (SSBs) differently over the course of the fire season and that different fire crews may exhibit different behavior patterns. METHODS: Researchers collected data in the field with 6 WFF crews during 2 consecutive fire seasons (2018 and 2019). WFF crews completed questionnaires before and after each season. WFFs with an initial preseason questionnaire and at least 1 follow-up questionnaire were included (n = 138). Descriptive statistics summarized WFFs' baseline demographic, employment, and health characteristics. Linear mixed models were used to test for changes in WFFs' substance use over time and assess crew-level differences. A meta-analysis of WFF longitudinal studies' population characteristics was attempted to contextualize baseline findings. RESULTS: WFFs were predominately male, less than 35 yr of age, non-Hispanic White, and had healthy weight. Smokeless tobacco use and binge drinking were prevalent in this cohort (52% and 78%, respectively, among respondents). Longitudinal analyses revealed that during the fire season WFFs' use of tobacco and SSBs increased and the number of days they consumed alcohol decreased. Crew-level associations varied by substance. The meta-analysis was not completed due to cross-study heterogeneity and inconsistent reporting. DISCUSSION: WFF agencies can promote evidence-based substance use prevention and management programs and modify working conditions that may influence WFF stress or substance use.
Assuntos
Bombeiros , Incêndios , Exposição Ocupacional , Transtornos Relacionados ao Uso de Substâncias , Humanos , Masculino , Comportamentos Relacionados com a SaúdeRESUMO
Single molecule localization (SML) and tracking (SPT) techniques, such as (spt)PALM, (u/DNA)PAINT and quantum dot tracking, have given unprecedented insight into the nanoscale molecular organization and dynamics in living cells. They allow monitoring individual proteins with millisecond temporal resolution and high spatial resolution (<30 nm) by precisely localizing the point spread function (PSF) of individual emitters and tracking their position over time. While SPT methods have been extended to study the temporal dynamics and co-organization of multiple proteins, conventional experimental setups are restricted in the number of proteins they can probe simultaneously and usually have to tradeoff between the number of colors, the spatio-temporal resolution, and the field of view. Yet, localizing and tracking several proteins simultaneously at high spatial and temporal resolution within large field of views can provide important biological insights. By employing a dual-objective spectral imaging configuration compatible with live cell imaging combined with dedicated computation tools, we demonstrate simultaneous 3D single particle localization and tracking of multiple distinct species over large field of views to be feasible without compromising spatio-temporal resolution. The dispersive element introduced into the second optical path induces a spectrally dependent displacement, which we used to analytically separate up to five different fluorescent species of single emitters based on their emission spectra. We used commercially available microscope bodies aligned one on top of the other, offering biologists with a very ergonomic and flexible instrument covering a broad range of SMLM applications. Finally, we developed a powerful freely available software, called PALMTracer, which allows to quantitatively assess 3D + t + λ SMLM data. We illustrate the capacity of our approach by performing multi-color 3D DNA-PAINT of fixed samples, and demonstrate simultaneous tracking of multiple receptors in live fibroblast and neuron cultures.
RESUMO
Synapse associated protein-97/Human Disk Large (SAP97/hDLG) is a conserved, alternatively spliced, modular, scaffolding protein critical in regulating the molecular organization of cell-cell junctions in vertebrates. We confirm that the molecular determinants of first order phase transition of SAP97/hDLG is controlled by morpho-functional changes in its nanoscale organization. Furthermore, the nanoscale molecular signatures of these signalling islands and phase transitions are altered in response to changes in cytosolic Ca2+. Additionally, exchange kinetics of alternatively spliced isoforms of the intrinsically disordered region in SAP97/hDLG C-terminus shows differential sensitivities to Ca2+ bound Calmodulin, affirming that the molecular signatures of local phase transitions of SAP97/hDLG depends on their nanoscale heterogeneity and compositionality of isoforms.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cálcio/metabolismo , Proteína 1 Homóloga a Discs-Large/metabolismo , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Calmodulina/genética , Calmodulina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismoRESUMO
The wildland firefighter exposure and health effect (WFFEHE) study was a 2-year repeated-measures study to investigate occupational exposures and acute and subacute health effects among wildland firefighters. This manuscript describes the study rationale, design, methods, limitations, challenges, and lessons learned. The WFFEHE cohort included fire personnel ages 18-57 from six federal wildland firefighting crews in Colorado and Idaho during the 2018 and 2019 fire seasons. All wildland firefighters employed by the recruited crews were invited to participate in the study at preseason and postseason study intervals. In 2019, one of the crews also participated in a 3-day midseason study interval where workplace exposures and pre/postshift measurements were collected while at a wildland fire incident. Study components assessed cardiovascular health, pulmonary function and inflammation, kidney function, workplace exposures, and noise-induced hearing loss. Measurements included self-reported risk factors and symptoms collected through questionnaires; serum and urine biomarkers of exposure, effect, and inflammation; pulmonary function; platelet function and arterial stiffness; and audiometric testing. Throughout the study, 154 wildland firefighters participated in at least one study interval, while 144 participated in two or more study interval. This study was completed by the Centers for Disease Control and Prevention's National Institute for Occupational Safety and Health through a collaborative effort with the U.S. Department of Agriculture Forest Service, Department of the Interior National Park Service, and Skidmore College. Conducting research in the wildfire environment came with many challenges including collecting study data with study participants with changing work schedules and conducting study protocols safely and operating laboratory equipment in remote field locations. Forthcoming WFFEHE study results will contribute to the scientific evidence regarding occupational risk factors and exposures that can impact wildland firefighter health over a season and across two wildland fire seasons. This research is anticipated to lead to the development of preventive measures and policies aimed at reducing risk for wildland firefighters and aid in identifying future research needs for the wildland fire community.
Assuntos
Bombeiros , Incêndios , Perda Auditiva Provocada por Ruído , Exposição Ocupacional , Adolescente , Adulto , Humanos , Inflamação , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Estados Unidos , Adulto JovemRESUMO
Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD.
Assuntos
Proteína 4 Homóloga a Disks-Large/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Trifosfato de Adenosina/administração & dosagem , Animais , Autofagia/fisiologia , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/deficiência , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Modelos Neurológicos , N-Metilaspartato/administração & dosagem , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Receptores Purinérgicos P2X/fisiologiaRESUMO
Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid-liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca2+-induced liquid-liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Extração Líquido-Líquido/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ativação Enzimática/fisiologia , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/análise , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Throughout the United States, wildland firefighters respond to wildfires, performing arduous work in remote locations. Wildfire incidents can be an ideal environment for the transmission of infectious diseases, particularly for wildland firefighters who congregate in work and living settings. In this review, we examine how exposure to wildfire smoke can contribute to an increased likelihood of SARS-CoV-2 infection and severity of coronavirus disease (COVID-19). Human exposure to particulate matter (PM), a component of wildfire smoke, has been associated with oxidative stress and inflammatory responses; increasing the likelihood for adverse respiratory symptomology and pathology. In multiple epidemiological studies, wildfire smoke exposure has been associated with acute lower respiratory infections, such as bronchitis and pneumonia. Co-occurrence of SARS-CoV-2 infection and wildfire smoke inhalation may present an increased risk for COVID-19 illness in wildland firefighters due to PM based transport of SARS CoV-2 virus and up-regulation of angiotensin-converting enzyme II (ACE-2) (i.e. ACE-2 functions as a trans-membrane receptor, allowing the SARS-CoV-2 virus to gain entry into the epithelial cell). Wildfire smoke exposure may also increase risk for more severe COVID-19 illness such as cytokine release syndrome, hypotension, and acute respiratory distress syndrome (ARDS). Current infection control measures, including social distancing, wearing cloth masks, frequent cleaning and disinfecting of surfaces, frequent hand washing, and daily screening for COVID-19 symptoms are very important measures to reduce infections and severe health outcomes. Exposure to wildfire smoke may introduce additive or even multiplicative risk for SARS-CoV-2 infection and severity of disease in wildland firefighters. Thus, additional mitigative measures may be needed to prevent the co-occurrence of wildfire smoke exposure and SARS-CoV-2 infection.
Assuntos
COVID-19 , Coronavirus , Bombeiros , Humanos , SARS-CoV-2 , Fumaça/efeitos adversosRESUMO
Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)-which play key roles in the use-dependent adaptation of glutamatergic synapses-along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.
Assuntos
Dendritos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Sinapses/metabolismoRESUMO
Super-resolution microscopy offers tremendous opportunities to unravel the complex and dynamic architecture of living cells. However, current super-resolution microscopes are well suited for revealing protein distributions or cell morphology, but not both. We present a super-resolution platform that permits correlative single-molecule imaging and stimulated emission depletion microscopy in live cells. It gives nanoscale access to the positions and movements of synaptic proteins within the morphological context of growth cones and dendritic spines.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Ratos , Ratos Sprague-DawleyRESUMO
Carbon monoxide (CO) exposure levels encountered by wildland firefighters (WLFs) throughout their work shift can change considerably within a few minutes due to the varied tasks that are performed and the changing environmental and fire conditions encountered throughout the day. In a U.S. Forest Service study during the 2009-2012 fire seasons, WLFs from 57 different fires across the U.S. were monitored for CO using CO data-logging detectors while an observer recorded worker tasks, fire characteristics, and environmental conditions at scheduled intervals. Exposures to CO for 735 WLF's work shifts were analyzed to assess the effect of variations among work tasks, fire characteristics, and environmental conditions. Geometric mean full shift time-weighted averages were low at 2.4 parts per million (ppm) and average length of work shift was 11 hr and 15 min. The task with the highest mean CO exposure was sawyer/swamper at 6.8 ppm; workers performing that task had an estimated 9 times higher odds of a having a 1-min CO measurement exceeding 25 ppm than the referent pump task (OR = 8.89, 95% CI = 1.97, 40.24). After adjusting CO exposure limits for shift length, elevation, and work level, 2% and 4% of the WLF's work shifts exceeded the National Institute for Occupational Safety and Health's recommended exposure level and the American Conference of Governmental Industrial Hygienist's threshold limit value, respectively. In regression modeling, variables that were significantly associated with elevated levels of CO exposure included: task, fuel model, wind orientation, crew type, relative humidity, type of attack, and wind speed. In the absence of instruments such as CO detectors that can determine and alert WLFs to elevated CO levels, recognition of the conditions that lead to elevated levels of CO exposure can assist WLFs to effectively use administrative controls, such as work rotations, to minimize exposures.
Assuntos
Poluentes Ocupacionais do Ar/análise , Monóxido de Carbono/análise , Bombeiros , Exposição por Inalação/análise , Exposição Ocupacional/análise , Monitoramento Ambiental/métodos , Incêndios , Florestas , Humanos , Fumaça/análise , Estados Unidos , VentoRESUMO
Multicolor single-molecule localization microscopy (λSMLM) is a powerful technique to reveal the relative nanoscale organization and potential colocalization between different molecular species. While several standard analysis methods exist for pixel-based images, λSMLM still lacks such a standard. Moreover, existing methods only work on 2D data and are usually sensitive to the relative molecular organization, a very important parameter to consider in quantitative SMLM. Here, we present an efficient, parameter-free colocalization analysis method for 2D and 3D λSMLM using tessellation analysis. We demonstrate that our method allows for the efficient computation of several popular colocalization estimators directly from molecular coordinates and illustrate its capability to analyze multicolor SMLM data in a robust and efficient manner.
RESUMO
Spurious blinking fluorescent spots are often seen in bacteria during single-molecule localization microscopy experiments. Although this 'autoblinking' phenomenon is widespread, its origin remains unclear. In Deinococcus strains, we observed particularly strong autoblinking at the periphery of the bacteria, facilitating its comprehensive characterization. A systematic evaluation of the contributions of different components of the sample environment to autoblinking levels and the in-depth analysis of the photophysical properties of autoblinking molecules indicate that the phenomenon results from transient binding of fluorophores originating mostly from the growth medium to the bacterial cell wall, which produces single-molecule fluorescence through a Point Accumulation for Imaging in Nanoscale Topography (PAINT) mechanism. Our data suggest that the autoblinking molecules preferentially bind to the plasma membrane of bacterial cells. Autoblinking microscopy was used to acquire nanoscale images of live, unlabeled D. radiodurans and could be combined with PALM imaging of PAmCherry-labeled bacteria in two-color experiments. Autoblinking-based super-resolved images provided insight into the formation of septa in dividing bacteria and revealed heterogeneities in the distribution and dynamics of autoblinking molecules within the cell wall.
Assuntos
Parede Celular/ultraestrutura , Deinococcus/ultraestrutura , Imagem Individual de Molécula/métodos , Microscopia de Fluorescência , Nanotecnologia/métodosRESUMO
Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.
Assuntos
Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Animais , Células COS , Chlorocebus aethiops , Mineração de Dados , Corantes Fluorescentes , Células HeLa , Humanos , Proteínas de Membrana/análise , Transporte Proteico , Receptores de Neurotransmissores/análise , Software , Fluxo de TrabalhoRESUMO
Wildland fire fighters use many tools and equipment that produce noise levels that may be considered hazardous to hearing. This study evaluated 174 personal dosimetry measurements on 156 wildland fire fighters conducting various training and fire suppression tasks. Noise exposures often exceeded occupational exposure limits and suggest that wildland fire fighters may be at risk of developing noise-induced hearing loss, particularly those operating chainsaws, chippers, and masticators. The authors recommend a comprehensive approach to protecting these fire fighters that includes purchasing quieter equipment, noise and administrative controls, and enrolling these fire fighters into a hearing conservation program.
RESUMO
Wildland fire fighting is a high-risk occupation requiring considerable physical and psychological demands. Multiple agencies publish fatality summaries for wildland firefighters; however, the reported number and types vary. At least five different surveillance systems capture deaths, each with varying case definitions and case inclusion/exclusion criteria. Four are population-level systems and one is case-based. System differences create challenges to accurately characterize fatalities. Data within each of the five surveillance systems were examined to better understand the types of wildland firefighter data collected, to assess each system's utility in characterizing wildland firefighter fatalities, and to determine each system's potential to inform prevention strategies. To describe similarities and differences in how data were recorded and characterized, wildland fire deaths for three of the population-based systems were matched and individual fatalities across systems were compared. Between 2001 and 2012, 247 unique deaths were captured among the systems; 73% of these were captured in all three systems. Most common causes of death in all systems were associated with aviation, vehicles, medical events, and entrapments/burnovers. The data show that, although the three systems often report similar annual summary statistics, events captured in each system vary each year depending on the types of events that the system is designed to track, such as inclusion/exclusion of fatalities associated with the Hometown Heroes Survivor Benefits Act of 2003. The overarching and central goal of each system is to collect accurate and timely information to improve wildland firefighter safety and health. Each system is unique and has varying inclusion and exclusion criteria for capturing and tracking different subsets of wildland firefighter tasks and duties. Use of a common case definition and better descriptions and interpretations of the data and the results would help to more accurately characterize wildland firefighter traumatic injuries and illnesses, lessen the likelihood for misinterpretation of wildland firefighter fatality data, and assist with defining the true occupational injury burden within this high-risk population.
Assuntos
Acidentes de Trabalho/mortalidade , Bombeiros/estatística & dados numéricos , Incêndios/estatística & dados numéricos , Meio Selvagem , Coleta de Dados/métodos , Humanos , Doenças Profissionais/mortalidade , Traumatismos Ocupacionais/mortalidade , Estados Unidos/epidemiologiaRESUMO
The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1ß, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures.
Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Nanotecnologia/métodos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Coloração e Rotulagem/métodos , Sinapses/metabolismo , Animais , Biotinilação , Proteínas de Fluorescência Verde , Células HEK293 , Hipocampo/citologia , Humanos , Indicadores e Reagentes , Camundongos , Camundongos Knockout , Simulação de Dinâmica Molecular , Moléculas de Adesão de Célula Nervosa/metabolismo , Ratos , EstreptavidinaRESUMO
Localization-based super-resolution techniques open the door to unprecedented analysis of molecular organization. This task often involves complex image processing adapted to the specific topology and quality of the image to be analyzed. Here we present a segmentation framework based on Voronoï tessellation constructed from the coordinates of localized molecules, implemented in freely available and open-source SR-Tesseler software. This method allows precise, robust and automatic quantification of protein organization at different scales, from the cellular level down to clusters of a few fluorescent markers. We validated our method on simulated data and on various biological experimental data of proteins labeled with genetically encoded fluorescent proteins or organic fluorophores. In addition to providing insight into complex protein organization, this polygon-based method should serve as a reference for the development of new types of quantifications, as well as for the optimization of existing ones.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Receptores de Glicina/metabolismo , Algoritmos , Animais , Células COS , Chlorocebus aethiops , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Corantes Fluorescentes/química , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Oócitos/metabolismo , Reconhecimento Automatizado de Padrão , Software , Xenopus laevisRESUMO
Airplanes and helicopters are integral to the management and suppression of wildfires, often operating in high-risk, low-altitude environments. To update data on aviation-related wildland firefighting fatalities, identify risk factors, and make recommendations for improved safety, CDC's National Institute for Occupational Safety and Health (NIOSH) analyzed reports from multiple data sources for the period 2000-2013. Among 298 wildland firefighter fatalities identified during 2000-2013, 78 (26.2%) were aviation-related occupational fatalities that occurred during 41 separate events involving 42 aircraft. Aircraft crashes accounted for 38 events. Pilots, copilots, and flight engineers represented 53 (68%) of the aviation-related fatalities. The leading causes of fatal aircraft crashes were engine, structure, or component failure (24%); pilot loss of control (24%); failure to maintain clearance from terrain, water, or objects (20%); and hazardous weather (15%). To reduce fatalities from aviation-related wildland firefighting activities, stringent safety guidelines need to be followed during all phases of firefighting, including training exercises. Crew resource management techniques, which use all available resources, information, equipment, and personnel to achieve safe and efficient flight operations, can be applied to firefighting operations.