Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281643

RESUMO

Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.


Colorectal cancer remains one of the most widespread and deadly cancers worldwide. Poor health outcomes are usually linked to diseased cells spreading from the intestine to create new tumors in the liver or other parts of the body. Treatment involves surgically removing the initial tumors in the bowel, but patient survival could be improved if, in parallel, their immune system was 'boosted' to destroy cancer cells before they can form other tumors. Interferon alpha is a small protein which helps to coordinate how the immune system recognizes and deactivates foreign agents and cancerous cells. It has recently been trialed as a colorectal cancer treatment to prevent tumors from spreading to the liver, but only with limited success. This partly because interferon-alpha is usually administered in high and pulsed doses, which cause severe side effects through the body. Instead, Tran, Ferreira, Alvarez-Moya et al. aimed to investigate whether continuously delivering lower amounts of the drug could be a better approach. This strategy was tested on mice in which colorectal cancer cells had been implanted into the wall of the large intestine. Continuous administration minimized the risk of the implanted cancer cells spreading to the liver while also creating fewer side effects. The team was able to identify an optimum delivery strategy by varying how much interferon-alpha the animals received and when. Further experiments also revealed a new mechanism by which interferon-alpha prevented the spread of colorectal cancer. Upon receiving continuous doses of the drug, a group of liver cells started to generate a physical barrier which stopped cancer cells from being able to invade the organ. The treatment also promoted long-term immune responses that targeted diseased cells while being safe for healthy tissues. If confirmed in clinical trials, these results suggest that colorectal patients undergoing tumor removal surgery may benefit from also receiving interferon-alpha through continuous delivery.


Assuntos
Neoplasias Colorretais , Interferon-alfa , Animais , Camundongos , Células Endoteliais/patologia , Linfócitos T CD8-Positivos , Fígado , Hepatócitos , Neoplasias Colorretais/patologia
2.
Adv Funct Mater ; 27(36)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28979182

RESUMO

NGR (asparagine-glycine-arginine) is a tumor vasculature-homing peptide motif widely used for the functionalization of drugs, nanomaterials and imaging compounds for cancer treatment and diagnosis. Unfortunately, this motif has a strong propensity to undergo rapid deamidation. This reaction, which converts NGR into isoDGR, is associated with receptor switching from CD13 to integrins, with potentially important manufacturing, pharmacological and toxicological implications. It is found that glycine N-methylation of NGR-tagged nanocarriers completely prevents asparagine deamidation without impairing CD13 recognition. Studies in animal models have shown that the methylated NGR motif can be exploited for delivering radiolabeled compounds and nanocarriers, such as tumor necrosis factor-α (TNF)-bearing nanogold and liposomal doxorubicin, to tumors with improved selectivity. These findings suggest that this NGR derivative is a stable and efficient tumor-homing ligand that can be used for delivering functional nanomaterials to tumor vasculature.

3.
EMBO J ; 33(21): 2458-72, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25168639

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure-function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin-matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch.


Assuntos
Integrinas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/fisiologia , Vitronectina/metabolismo , Adesão Celular/fisiologia , Células HEK293 , Humanos , Integrinas/genética , Mutação , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Vitronectina/genética
4.
Leuk Res ; 36(7): 852-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22365942

RESUMO

Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by ineffective hematopoiesis and an increased risk of evolution to acute myeloid leukemia (AML). In this study, the combination of conventional cytogenetic, FISH studies and molecular techniques allowed us to unveil a novel recurrent t(3;11)(q13;q14) causing the overexpression of the immunoglobulin-like domain-containing receptor (ILDR1) gene. The analysis of gene expression was extended to Refractory Anemia (RA) and Refractory Anemia with excess blasts (RAEB) cases revealing ILDR1 overexpression in 36% of RAEB subgroup. The biological implications of the ILDR1 overexpression in MDS pathogenesis and its potential prognostic significance should be further investigated.


Assuntos
Cromossomos Humanos Par 11 , Cromossomos Humanos Par 3 , Síndromes Mielodisplásicas/genética , Receptores de Superfície Celular/genética , Translocação Genética , Idoso , Anemia Refratária/genética , Anemia Refratária com Excesso de Blastos/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 3/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Translocação Genética/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA