Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 662: 124460, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39004291

RESUMO

Liposomes constitute a widespread drug delivery platform, gaining more and more attention from the pharmaceutical industry and process development scientists. Their large-scale production as medicinal products for human use is all but trivial, especially when parenteral administration is required. In this study an off-the-shelf microfluidic system and a methodological approach are presented for the optimization, validation and scale-up of highly monodisperse liposomes manufacturing. Starting from a Doxil®-like formulation (HSPC, MPEG-DSPE and cholesterol), a rational approach (Design of Experiments, DoE) was applied for the screening of the process parameters affecting the quality attributes of the product (mainly size and polydispersity). Additional DoEs were conducted to determine the effect of critical process parameters "CPPs" (cholesterol concentration, total flow rate "TFR" and flow rate ratio "FRR"), thus assessing the formulation and process robustness. A scale-up was then successfully accomplished. The procedure was applied to a Marqibo®-like formulation as well (sphingomyelin and cholesterol) to show the generality of the proposed formulation, process development and scale-up approach. The application of the system and method herein presented enables the large-scale manufacturing of liposomes, in compliance with the internationally recognized regulatory standards for pharmaceutical development (Quality by Design).


Assuntos
Colesterol , Lipossomos , Microfluídica , Polietilenoglicóis , Colesterol/química , Polietilenoglicóis/química , Microfluídica/métodos , Doxorrubicina/química , Doxorrubicina/análogos & derivados , Fosfatidiletanolaminas/química , Tamanho da Partícula , Química Farmacêutica/métodos , Esfingomielinas/química , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Fosfatidilcolinas/química , Sistemas de Liberação de Medicamentos
2.
J Control Release ; 360: 747-758, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451546

RESUMO

Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis.


Assuntos
Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Bevacizumab , Fator A de Crescimento do Endotélio Vascular/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neovascularização Patológica/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Colágeno , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA