Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Hum Genet ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570725

RESUMO

By developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy, the Dutch Pharmacogenetics Working Group (DPWG) aims to advance the implementation of pharmacogenetics (PGx). This guideline outlines the gene-drug interaction of CYP2C9 and HLA-B with phenytoin, HLA-A and HLA-B with carbamazepine and HLA-B with oxcarbazepine and lamotrigine. A systematic review was performed and pharmacotherapeutic recommendations were developed. For CYP2C9 intermediate and poor metabolisers, the DPWG recommends lowering the daily dose of phenytoin and adjust based on effect and serum concentration after 7-10 days. For HLA-B*15:02 carriers, the risk of severe cutaneous adverse events associated with phenytoin, carbamazepine, oxcarbazepine, and lamotrigine is strongly increased. For carbamazepine, this risk is also increased in HLA-B*15:11 and HLA-A*31:01 carriers. For HLA-B*15:02, HLA-B*15:11 and HLA-A*31:01 positive patients, the DPWG recommends choosing an alternative anti-epileptic drug. If not possible, it is recommended to advise the patient to report any rash while using carbamazepine, lamotrigine, oxcarbazepine or phenytoin immediately. Carbamazepine should not be used in an HLA-B*15:02 positive patient. DPWG considers CYP2C9 genotyping before the start of phenytoin "essential" for toxicity prevention. For patients with an ancestry in which the abovementioned HLA-alleles are prevalent, the DPWG considers HLA-B*15:02 genotyping before the start of carbamazepine, phenytoin, oxcarbazepine, and lamotrigine "beneficial", as well as genotyping for HLA-B*15:11 and HLA-A*31:01 before initiating carbamazepine.

2.
Eur J Hum Genet ; 32(3): 278-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002327

RESUMO

The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy. A guideline describing the gene-drug interaction between the genes CYP2D6, CYP3A4 and CYP1A2 and antipsychotics is presented here. The DPWG identified gene-drug interactions that require therapy adjustments when respective genotype is known for CYP2D6 with aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol, and for CYP3A4 with quetiapine. Evidence-based dose recommendations were obtained based on a systematic review of published literature. Reduction of the normal dose is recommended for aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol for CYP2D6-predicted PMs, and for pimozide and zuclopenthixol also for CYP2D6 IMs. For CYP2D6 UMs, a dose increase or an alternative drug is recommended for haloperidol and an alternative drug or titration of the dose for risperidone. In addition, in case of no or limited clinical effect, a dose increase is recommended for zuclopenthixol for CYP2D6 UMs. Even though evidence is limited, the DPWG recommends choosing an alternative drug to treat symptoms of depression or a dose reduction for other indications for quetiapine and CYP3A4 PMs. No therapy adjustments are recommended for the other CYP2D6 and CYP3A4 predicted phenotypes. In addition, no action is required for the gene-drug combinations CYP2D6 and clozapine, flupentixol, olanzapine or quetiapine and also not for CYP1A2 and clozapine or olanzapine. For identified gene-drug interactions requiring therapy adjustments, genotyping of CYP2D6 or CYP3A4 prior to treatment should not be considered for all patients, but on an individual patient basis only.


Assuntos
Antipsicóticos , Clozapina , Quinolonas , Tiofenos , Humanos , Antipsicóticos/farmacocinética , Antipsicóticos/farmacologia , Aripiprazol , Clopentixol , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Interações Medicamentosas , Haloperidol , Olanzapina , Farmacogenética , Pimozida , Fumarato de Quetiapina/farmacocinética , Fumarato de Quetiapina/farmacologia , Risperidona/farmacocinética , Risperidona/farmacologia
4.
Eur J Hum Genet ; 31(12): 1364-1370, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509836

RESUMO

Pharmacogenetics (PGx) studies the effect of heritable genetic variation on drug response. Clinical adoption of PGx has remained limited, despite progress in the field. To promote implementation, the Dutch Pharmacogenetics Working Group (DPWG) develops evidence-based guidelines on how to optimize pharmacotherapy based on PGx test results. This guideline describes optimization of atomoxetine therapy based on genetic variation in the CYP2D6 gene. The CYP2D6 enzyme is involved in conversion of atomoxetine into the metabolite 4-hydroxyatomoxetine. With decreasing CYP2D6 enzyme activity, the exposure to atomoxetine and the risk of atomoxetine induced side effects increases. So, for patients with genetically absent CYP2D6 enzyme activity (CYP2D6 poor metabolisers), the DPWG recommends to start with the normal initial dose, bearing in mind that increasing this dose probably will not be required. In case of side effects and/or a late response, the DPWG recommends to reduce the dose and check for sustained effectiveness for both poor metabolisers and patients with genetically reduced CYP2D6 enzyme activity (CYP2D6 intermediate metabolisers). Extra vigilance for ineffectiveness is required in patients with genetically increased CYP2D6 enzyme activity (CYP2D6 ultra-rapid metabolisers). No interaction was found between the CYP2D6 and COMT genes and methylphenidate. In addition, no interaction was found between CYP2D6 and clonidine, confirming the suitability of clonidine as a possible alternative for atomoxetine in variant CYP2D6 metabolisers. The DPWG classifies CYP2D6 genotyping as being "potentially beneficial" for atomoxetine. CYP2D6 testing prior to treatment can be considered on an individual patient basis.


Assuntos
Citocromo P-450 CYP2D6 , Metilfenidato , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Cloridrato de Atomoxetina/uso terapêutico , Farmacogenética , Metilfenidato/uso terapêutico , Clonidina , Interações Medicamentosas , Catecol O-Metiltransferase
5.
Eur J Hum Genet ; 31(9): 982-987, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36443464

RESUMO

The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of the anti-cancer drug irinotecan to decrease the risk of severe toxicity, such as (febrile) neutropenia or diarrhoea. Uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1 encoded by the UGT1A1 gene) enzyme deficiency increases risk of irinotecan-induced toxicity. Gene variants leading to UGT1A1 enzyme deficiency (e.g. UGT1A1*6, *28 and *37) can be used to optimize an individual's starting dose thereby preventing carriers from toxicity. Homozygous or compound heterozygous carriers of these allele variants are defined as UGT1A1 poor metabolisers (PM). DPWG recommends a 70% starting dose in PM patients and no dose reduction in IM patients who start treatment with irinotecan. Based on the DPWG clinical implication score, UGT1A1 genotyping is considered "essential", indicating that UGT1A1 testing must be performed prior to initiating irinotecan treatment.


Assuntos
Camptotecina , Farmacogenética , Humanos , Irinotecano/uso terapêutico , Camptotecina/efeitos adversos , Genótipo , Polimorfismo Genético , Interações Medicamentosas
6.
Eur J Hum Genet ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056234

RESUMO

The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the gene-drug interaction of ABCG2 with allopurinol, HLA-B with allopurinol, MTHFR with folic acid, and MTHFR with methotrexate, relevant for the treatment of gout, cancer, and rheumatoid arthritis. A systematic review was performed based on which pharmacotherapeutic recommendations were developed. Allopurinol is less effective in patients with the ABCG2 p.(Gln141Lys) variant. In HLA-B*58:01 carriers, the risk of severe cutaneous adverse events associated with allopurinol is strongly increased. The DPWG recommends using a higher allopurinol dose in patients with the ABCG2 p.(Gln141Lys) variant. For HLA-B*58:01 positive patients the DPWG recommends choosing an alternative (for instance febuxostat). The DPWG indicates that another option would be to precede treatment with allopurinol tolerance induction. Genotyping of ABCG2 in patients starting on allopurinol was judged to be 'potentially beneficial' for drug effectiveness, meaning genotyping can be considered on an individual patient basis. Genotyping for HLA-B*58:01 in patients starting on allopurinol was judged to be 'beneficial' for drug safety, meaning it is advised to consider genotyping the patient before (or directly after) drug therapy has been initiated. For MTHFR-folic acid there is evidence for a gene-drug interaction, but there is insufficient evidence for a clinical effect that makes therapy adjustment useful. Finally, for MTHFR-methotrexate there is insufficient evidence for a gene-drug interaction.

7.
Eur J Hum Genet ; 30(10): 1105-1113, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34267337

RESUMO

The current Dutch Pharmacogenetics Working Group (DPWG) guideline, describes the gene-drug interaction between CYP2D6 and the opioids codeine, tramadol and oxycodone. CYP2D6 genotype is translated into normal metaboliser (NM), intermediate metaboliser (IM), poor metaboliser (PM) or ultra-rapid metaboliser (UM). Codeine is contraindicated in UM adults if doses >20 mg every 6 h (q6h), in children ≥12 years if doses >10 mg q6h, or with additional risk factors. In PMs, an alternative analgesic should be given which is not or to a lesser extent metabolised by CYP2D6 (not tramadol). In IMs with insufficient analgesia, a higher dose or alternative analgesic should be given. For tramadol, the recommendations for IMs and PMs are the same as the recommendation for codeine and IMs. UMs should receive an alternative drug not or to a lesser extent metabolised by CYP2D6 or the dose should be decreased to 40% of the commonly prescribed dose. Due to the absence of effect on clinical outcomes of oxycodone in PMs, IMs and UMs no action is required. DPWG classifies CYP2D6 genotyping for codeine "beneficial" and recommends testing prior to, or shortly after initiation of treatment in case of higher doses or additional risk factors. CYP2D6 genotyping is classified as "potentially beneficial" for tramadol and can be considered on an individual patient basis.


Assuntos
Citocromo P-450 CYP2D6 , Tramadol , Adulto , Analgésicos Opioides/efeitos adversos , Criança , Codeína/efeitos adversos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Família 2 do Citocromo P450 , Interações Medicamentosas , Humanos , Oxicodona/efeitos adversos , Farmacogenética , Tramadol/uso terapêutico
8.
Eur J Hum Genet ; 30(10): 1114-1120, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34782755

RESUMO

The Dutch Pharmacogenetics Working Group (DPWG) guideline presented here, presents the gene-drug interaction between the genes CYP2C19 and CYP2D6 and antidepressants of the selective serotonin reuptake inhibitor type (SSRIs). Both genes' genotypes are translated into predicted normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), or ultra-rapid metabolizer (UM). Evidence-based dose recommendations were obtained, based on a structured analysis of published literature. In CYP2C19 PM patients, escitalopram dose should not exceed 50% of the normal maximum dose. In CYP2C19 IM patients, this is 75% of the normal maximum dose. Escitalopram should be avoided in UM patients. In CYP2C19 PM patients, citalopram dose should not exceed 50% of the normal maximum dose. In CYP2C19 IM patients, this is 70% (65-75%) of the normal maximum dose. In contrast to escitalopram, no action is needed for CYP2C19 UM patients. In CYP2C19 PM patients, sertraline dose should not exceed 37.5% of the normal maximum dose. No action is needed for CYP2C19 IM and UM patients. In CYP2D6 UM patients, paroxetine should be avoided. No action is needed for CYP2D6 PM and IM patients. In addition, no action is needed for the other gene-drug combinations. Clinical effects (increase in adverse events or decrease in efficacy) were lacking for these other gene-drug combinations. DPWG classifies CYP2C19 genotyping before the start of escitalopram, citalopram, and sertraline, and CYP2D6 genotyping before the start of paroxetine as "potentially beneficial" for toxicity/effectivity predictions. This indicates that genotyping prior to treatment can be considered on an individual patient basis.


Assuntos
Citocromo P-450 CYP2D6 , Inibidores Seletivos de Recaptação de Serotonina , Antidepressivos/efeitos adversos , Citalopram/uso terapêutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Família 2 do Citocromo P450 , Interações Medicamentosas , Humanos , Paroxetina/uso terapêutico , Farmacogenética , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Sertralina
10.
Eur J Hum Genet ; 28(4): 508-517, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31745289

RESUMO

Despite advances in the field of pharmacogenetics (PGx), clinical acceptance has remained limited. The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of three anti-cancer drugs (fluoropyrimidines: 5-fluorouracil, capecitabine and tegafur) to decrease the risk of severe, potentially fatal, toxicity (such as diarrhoea, hand-foot syndrome, mucositis or myelosuppression). Dihydropyrimidine dehydrogenase (DPD, encoded by the DPYD gene) enzyme deficiency increases risk of fluoropyrimidine-induced toxicity. The DPYD-gene activity score, determined by four DPYD variants, predicts DPD activity and can be used to optimize an individual's starting dose. The gene activity score ranges from 0 (no DPD activity) to 2 (normal DPD activity). In case it is not possible to calculate the gene activity score based on DPYD genotype, we recommend to determine the DPD activity and adjust the initial dose based on available data. For patients initiating 5-fluorouracil or capecitabine: subjects with a gene activity score of 0 are recommended to avoid systemic and cutaneous 5-fluorouracil or capecitabine; subjects with a gene activity score of 1 or 1.5 are recommended to initiate therapy with 50% the standard dose of 5-fluorouracil or capecitabine. For subjects initiating tegafur: subjects with a gene activity score of 0, 1 or 1.5 are recommended to avoid tegafur. Subjects with a gene activity score of 2 (reference) should receive a standard dose. Based on the DPWG clinical implication score, DPYD genotyping is considered "essential", therefore directing DPYD testing prior to initiating fluoropyrimidines.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina/efeitos adversos , Di-Hidrouracila Desidrogenase (NADP)/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Fluoruracila/efeitos adversos , Variantes Farmacogenômicos , Guias de Prática Clínica como Assunto , Antimetabólitos Antineoplásicos/administração & dosagem , Capecitabina/administração & dosagem , Di-Hidrouracila Desidrogenase (NADP)/normas , Tratamento Farmacológico/métodos , Tratamento Farmacológico/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Fluoruracila/administração & dosagem , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos
11.
Clin Pharmacol Ther ; 103(5): 795-801, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460273

RESUMO

Surveys among pharmacists and physicians show that these healthcare professionals have successfully adopted the concept of pharmacogenomics (PGx).1-3 In addition, patients are willing to consent to participate in PGx implementation studies.4 However, the surveys also show that healthcare professionals do not frequently order or recommend a PGx test.1,2 Among others, a frequently perceived hurdle for clinical uptake of PGx is the availability of guidelines translating PGx test results into clinical actions for individual patients.5,6.


Assuntos
Farmacogenética/legislação & jurisprudência , Testes Farmacogenômicos/legislação & jurisprudência , Europa (Continente) , Humanos , Farmacêuticos/legislação & jurisprudência , Médicos/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA