RESUMO
In the framework of further space exploration, countermeasures to combat the drawbacks of human space flights are essential. The present study focuses on the influence of microgravity on the otolith-ocular reflex and aims to test the hypothesis of artificial gravity being an adequate countermeasure for the deconditioning of the aforementioned reflex. The so-called SPIN study, commissioned by the European Space Agency, can be considered as a control experiment in the broad sense for the Neurolab mission (STS-90) during which 4 crewmembers of the space shuttle were subjected to in-flight centrifugation on the visual and vestibular investigation system (VVIS). After their nearly 16-day mission, they did not suffer from orthostatic intolerance and spatial disorientation. In addition, the relevant parameters of the otolith-ocular interaction remained unaffected. For this study cosmonauts from a long duration stay in the International Space Station that were not centrifuged in-flight were tested on the VVIS (1 g centripetal interaural acceleration) on 6 different days. Three measurements were taken about 1.5-2 months prior to launch and 3 were taken at 1, 4 and 9 days after return from space. Ocular counter-rolling was measured before, during and after rotation on the VVIS using infrared video goggles and compared pair wise using Friedman tests. The perception of verticality was monitored using an ultrasound system for perceptual evaluation. The preliminary results of 4 cosmonauts showed a surprisingly large inter-individual variability of the measurements. Although OCR and perception of verticality appeared to be influenced overall by the exposure to microgravity, the wide variability among the cosmonauts obscured any statistical significance, in particular due to one cosmonauts being inconsistent with the other 3. Despite the specificity of the tests under normal conditions, the diverse response to spaceflight of our subjects exposes the complexity of the peripheral and central neural adaptive processes.
Assuntos
Centrifugação , Membrana dos Otólitos/fisiologia , Voo Espacial , Adulto , Astronautas , Movimentos Oculares , Gravidade Alterada , Humanos , Masculino , Pessoa de Meia-Idade , Reflexo Vestíbulo-Ocular/fisiologia , Ausência de PesoRESUMO
The unilateral centrifugation test is one of the few vestibular tests that evaluate the utricles side by side. During this test, a subject is rotated about an earth vertical axis at high rotation speeds (e.g. 400 degrees/s) and translated sideways along the interaural axis to align the axis of rotation consecutively with the right and the left utricle. The combined rotation and translation induces ocular counter rolling (OCR), which is measured using three-dimensional video-oculography. Recently, a new model has been proposed to analyse the OCR. The model is based on contributions from both the semicircular canals and the utricles. Concomitant with the new model a new stimulation profile using a sinusoidal translation profile during the unilateral centrifugation has been introduced [1]. The current study presents the test-retest reliability as well as the robustness of the new stimulation method, based on data of 67 healthy subjects. Test-retest reliability was based on repeated measurements of a group of subjects. To test the robustness of the new sinusoidal translation paradigm, we investigated the effect of a different amplitude of the sinusoidal translation (6 cm instead of 4 cm) and of an offset in translation (from -3 to +5 cm, instead of from -4 to +4 cm) on the parameters. Several statistical measures were used to reflect the reliability: intraclass correlation coefficient (ICC), the "coefficient of variation of the method error" and the "minimal difference" (MD). All relevant variables from the physiological model for the OCR induced by unilateral centrifugation show a good to excellent reliability during the test-retest study and the relevant parameters remain unaffected by the changes applied to the translation profile (p > 0.05) as predicted by the model. Additionally, all observed differences are smaller than the MD values calculated in the test-retest part of the study.
Assuntos
Centrifugação , Modelos Biológicos , Vestíbulo do Labirinto/fisiologia , Medicina Aeroespacial/métodos , HumanosRESUMO
The utricle plays an important role in orientation with respect to gravity. The unilateral centrifugation test allows a side-by-side investigation of both utricles. During this test, the subject is rotated about an earth-vertical axis at high rotation speeds (e.g. 400°/s) and translated along an interaural axis to consecutively align the axis of rotation with the left and the right utricle. A simple sinusoidal translation profile (0.013 Hz; amplitude = 4 cm) was chosen. The combined rotation and translation induces ocular counter rolling (OCR), which is measured using 3-D video-oculography. This OCR is the sum of the reflexes generated by both the semicircular canals and the utricles. In this paper, we present a new physiological model that decomposes this total OCR into a canal and a utricular contribution, modelled by a second-order transfer function and a combination of 2 sine functions, respectively. This model yields parameters such as canal gain, cupular and adaptation time constants and a velocity storage component for the canals. Utricular gain, bias, phase and the asymmetry between the left and the right utricle are characteristic parameters generated by the model for the utricles. The model is presented along with the results of 10 healthy subjects and 2 patients with a unilateral vestibular loss due to acoustic neuroma surgery to illustrate the effectiveness of the model.