Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436561

RESUMO

Enrichment analysis (EA) is a common approach to gain functional insights from genome-scale experiments. As a consequence, a large number of EA methods have been developed, yet it is unclear from previous studies which method is the best for a given dataset. The main issues with previous benchmarks include the complexity of correctly assigning true pathways to a test dataset, and lack of generality of the evaluation metrics, for which the rank of a single target pathway is commonly used. We here provide a generalized EA benchmark and apply it to the most widely used EA methods, representing all four categories of current approaches. The benchmark employs a new set of 82 curated gene expression datasets from DNA microarray and RNA-Seq experiments for 26 diseases, of which only 13 are cancers. In order to address the shortcomings of the single target pathway approach and to enhance the sensitivity evaluation, we present the Disease Pathway Network, in which related Kyoto Encyclopedia of Genes and Genomes pathways are linked. We introduce a novel approach to evaluate pathway EA by combining sensitivity and specificity to provide a balanced evaluation of EA methods. This approach identifies Network Enrichment Analysis methods as the overall top performers compared with overlap-based methods. By using randomized gene expression datasets, we explore the null hypothesis bias of each method, revealing that most of them produce skewed P-values.


Assuntos
Benchmarking , RNA-Seq
2.
NAR Genom Bioinform ; 4(4): lqac093, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36458021

RESUMO

A vast scenario of potential disease mechanisms and remedies is yet to be discovered. The field of Network Medicine has grown thanks to the massive amount of high-throughput data and the emerging evidence that disease-related proteins form 'disease modules'. Relying on prior disease knowledge, network-based disease module detection algorithms aim at connecting the list of known disease associated genes by exploiting interaction networks. Most existing methods extend disease modules by iteratively adding connector genes in a bottom-up fashion, while top-down approaches remain largely unexplored. We have created TOPAS, an iterative approach that aims at connecting the largest number of seed nodes in a top-down fashion through connectors that guarantee the highest flow of a Random Walk with Restart in a network of functional associations. We used a corpus of 382 manually selected functional gene sets to benchmark our algorithm against SCA, DIAMOnD, MaxLink and ROBUST across four interactomes. We demonstrate that TOPAS outperforms competing methods in terms of Seed Recovery Rate, Seed to Connector Ratio and consistency during module detection. We also show that TOPAS achieves competitive performance in terms of biological relevance of detected modules and scalability.

3.
J Mol Biol ; 433(11): 166835, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33539890

RESUMO

FunCoup (https://funcoup.sbc.su.se) is one of the most comprehensive functional association networks of genes/proteins available. Functional associations are inferred by integrating different types of evidence using a redundancy-weighted naïve Bayesian approach, combined with orthology transfer. FunCoup's high coverage comes from using eleven different types of evidence, and extensive transfer of information between species. Since the latest update of the database, the availability of source data has improved drastically, and user expectations on a tool for functional associations have grown. To meet these requirements, we have made a new release of FunCoup with updated source data and improved functionality. FunCoup 5 now includes 22 species from all domains of life, and the source data for evidences, gold standards, and genomes have been updated to the latest available versions. In this new release, directed regulatory links inferred from transcription factor binding can be visualized in the network viewer for the human interactome. Another new feature is the possibility to filter by genes expressed in a certain tissue in the network viewer. FunCoup 5 further includes the SARS-CoV-2 proteome, allowing users to visualize and analyze interactions between SARS-CoV-2 and human proteins in order to better understand COVID-19. This new release of FunCoup constitutes a major advance for the users, with updated sources, new species and improved functionality for analysis of the networks.


Assuntos
Bases de Dados Factuais , Redes Reguladoras de Genes , Especificidade de Órgãos , Mapas de Interação de Proteínas , Teorema de Bayes , COVID-19/metabolismo , COVID-19/virologia , Genoma , Interações entre Hospedeiro e Microrganismos , Humanos , Ligação Proteica , Proteínas , Proteoma , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA