Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EJVES Vasc Forum ; 59: 24-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389371

RESUMO

Objective: Fiber Optic RealShape (FORS) is a new technology that visualises the full three dimensional (3D) shape of guidewires using an optical fibre embedded in the device. Co-registering FORS guidewires with anatomical images, such as a digital subtraction angiography (DSA), provides anatomical context for navigating these devices during endovascular procedures. The objective of this study was to demonstrate the feasibility and usability of visualising compatible conventional navigation catheters, together with the FORS guidewire, in phantom with a new 3D Hub technology and to understand potential clinical benefits. Methods: The accuracy of localising the 3D Hub and catheter in relation to the FORS guidewire, was evaluated using a translation stage test setup and a retrospective analysis of prior clinical data. Catheter visualisation accuracy and navigation success was assessed in a phantom study where 15 interventionists navigated devices to three pre-defined targets in an abdominal aortic phantom using an Xray or computed tomography angiography (CTA) roadmap. Additionally, the interventionists were surveyed about the usability and potential benefits of the 3D Hub. Results: The location of the 3D Hub and catheter along the FORS guidewire was detected correctly 96.59% of the time. During the phantom study, all 15 interventionists successfully reached the target locations 100% of the time and the error in catheter visualisation was 0.69 mm. The interventionists agreed or strongly agreed that the 3D Hub was easy to use and the greatest potential clinical benefit over FORS is in offering interventionists choice over which catheter they used. Conclusion: This set of studies has shown that FORS guided catheter visualisation, enabled by a 3D Hub, is accurate and easy to use in a phantom setting. Further evaluation is needed to understand the benefits and limitations of the 3D Hub technology during endovascular procedures.

2.
J Transl Med ; 16(1): 367, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567584

RESUMO

BACKGROUND: Breast cancer surgeons struggle with differentiating healthy tissue from cancer at the resection margin during surgery. We report on the feasibility of using diffuse reflectance spectroscopy (DRS) for real-time in vivo tissue characterization. METHODS: Evaluating feasibility of the technology requires a setting in which measurements, imaging and pathology have the best possible correlation. For this purpose an optical biopsy needle was used that had integrated optical fibers at the tip of the needle. This approach enabled the best possible correlation between optical measurement volume and tissue histology. With this optical biopsy needle we acquired real-time DRS data of normal tissue and tumor tissue in 27 patients that underwent an ultrasound guided breast biopsy procedure. Five additional patients were measured in continuous mode in which we obtained DRS measurements along the entire biopsy needle trajectory. We developed and compared three different support vector machine based classification models to classify the DRS measurements. RESULTS: With DRS malignant tissue could be discriminated from healthy tissue. The classification model that was based on eight selected wavelengths had the highest accuracy and Matthews Correlation Coefficient (MCC) of 0.93 and 0.87, respectively. In three patients that were measured in continuous mode and had malignant tissue in their biopsy specimen, a clear transition was seen in the classified DRS measurements going from healthy tissue to tumor tissue. This transition was not seen in the other two continuously measured patients that had benign tissue in their biopsy specimen. CONCLUSIONS: It was concluded that DRS is feasible for integration in a surgical tool that could assist the breast surgeon in detecting positive resection margins during breast surgery. Trail registration NIH US National Library of Medicine-clinicaltrails.gov, NCT01730365. Registered: 10/04/2012 https://clinicaltrials.gov/ct2/show/study/NCT01730365.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Sistemas Computacionais , Cuidados Intraoperatórios/métodos , Análise Espectral/métodos , Biópsia , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Fibras Ópticas
3.
Lasers Surg Med ; 50(9): 948-960, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29756651

RESUMO

BACKGROUND: During several anesthesiological procedures, needles are inserted through the skin of a patient to target nerves. In most cases, the needle traverses several tissues-skin, subcutaneous adipose tissue, muscles, nerves, and blood vessels-to reach the target nerve. A clear identification of the target nerve can improve the success of the nerve block and reduce the rate of complications. This may be accomplished with diffuse reflectance spectroscopy (DRS) which can provide a quantitative measure of the tissue composition. The goal of the current study was to further explore the morphological, biological, chemical, and optical characteristics of the tissues encountered during needle insertion to improve future DRS classification algorithms. METHODS: To compare characteristics of nerve tissue (sciatic nerve) and adipose tissues, the following techniques were used: histology, DRS, absorption spectrophotometry, high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, and solution 2D 13 C-1 H heteronuclear single-quantum coherence spectroscopy. Tissues from five human freshly frozen cadavers were examined. RESULTS: Histology clearly highlights a higher density of cellular nuclei, collagen, and cytoplasm in fascicular nerve tissue (IFAS). IFAS showed lower absorption of light around 1200 nm and 1750 nm, higher absorption around 1500 nm and 2000 nm, and a shift in the peak observed around 1000 nm. DRS measurements showed a higher water percentage and collagen concentration in IFAS and a lower fat percentage compared to all other tissues. The scattering parameter (b) was highest in IFAS. The HR-MAS NMR data showed three extra chemical peak shifts in IFAS tissue. CONCLUSION: Collagen, water, and cellular nuclei concentration are clearly different between nerve fascicular tissue and other adipose tissue and explain some of the differences observed in the optical absorption, DRS, and HR-NMR spectra of these tissues. Some differences observed between fascicular nerve tissue and adipose tissues cannot yet be explained but may be helpful in improving the discriminatory capabilities of DRS in anesthesiology procedures. Lasers Surg. Med. 50:948-960, 2018. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Tecido Nervoso/diagnóstico por imagem , Tecido Nervoso/patologia , Imagem Óptica , Análise Espectral , Idoso , Idoso de 80 Anos ou mais , Feminino , Técnicas Histológicas , Humanos , Masculino , Técnicas de Cultura de Tecidos
4.
Lasers Med Sci ; 33(3): 619-625, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29396730

RESUMO

Precise nerve localization is of major importance in both surgery and regional anesthesia. Optically based techniques can identify tissue through differences in optical properties, like absorption and scattering. The aim of this study was to evaluate the potential of optical spectroscopy (diffuse reflectance spectroscopy) for clinical nerve identification in vivo. Eighteen patients (8 male, 10 female, age 53 ± 13 years) undergoing inguinal lymph node resection or resection or a soft tissue tumor in the groin were included to measure the femoral or sciatic nerve and the surrounding tissues. In vivo optical measurements were performed using Diffuse Reflectance Spectroscopy (400-1600 nm) on nerve, near nerve adipose tissue, muscle, and subcutaneous fat using a needle-shaped probe. Model-based analyses were used to derive verified quantitative parameters as concentrations of optical absorbers and several parameters describing scattering. A total of 628 optical spectra were recorded. Measured spectra reveal noticeable tissue specific characteristics. Optical absorption of water, fat, and oxy- and deoxyhemoglobin was manifested in the measured spectra. The parameters water and fat content showed significant differences (P < 0.005) between nerve and all surrounding tissues. Classification using k-Nearest Neighbor based on the derived parameters revealed a sensitivity of 85% and a specificity of 79%, for identifying nerve from surrounding tissues. Diffuse Reflectance Spectroscopy identifies peripheral nerve bundles. The differences found between tissue groups are assignable to the tissue composition and structure.


Assuntos
Imagem Óptica/métodos , Nervos Periféricos/cirurgia , Análise Espectral/métodos , Tecido Adiposo/inervação , Feminino , Hemoglobinas , Humanos , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/inervação
5.
Lasers Surg Med ; 50(3): 253-261, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29160568

RESUMO

OBJECTIVE: Identification of peripheral nerve tissue is crucial in both surgery and regional anesthesia. Recently, optical tissue identification methods are presented to facilitate nerve identification in transcutaneous procedures and surgery. Optimization and validation of such techniques require large datasets. The use of alternative models to human in vivo, like human post mortem, or swine may be suitable to test, optimize and validate new optical techniques. However, differences in tissue characteristics and thus optical properties, like oxygen saturation and tissue perfusion are to be expected. This requires a structured comparison between the models. STUDY DESIGN: Comparative observational study. METHODS: Nerve and surrounding tissues in human (in vivo and post mortem) and swine (in vivo and post mortem) were structurally compared macroscopically, histologically, and spectroscopically. Diffuse reflective spectra were acquired (400-1,600 nm) after illumination with a broad band halogen light. An analytical model was used to quantify optical parameters including concentrations of optical absorbers. RESULTS: Several differences were found histologically and in the optical parameters. Histologically nerve and adipose tissue (subcutaneous fat and sliding fat) showed clear similarities between human and swine while human muscle enclosed more adipocytes and endomysial collagen. Optical parameters revealed model dependent differences in concentrations of ß-carotene, water, fat, and oxygen saturation. The similarity between optical parameters is, however, sufficient to yield a strong positive correlation after cross model classification. CONCLUSION: This study shows and discusses similarities and differences in nerve and surrounding tissues between human in vivo and post mortem, and swine in vivo and post mortem; this could support the discussion to use an alternative model to optimize and validate optical techniques for clinical nerve identification. Lasers Surg. Med. 50:253-261, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Tecido Nervoso/diagnóstico por imagem , Imagem Óptica , Nervos Periféricos/diagnóstico por imagem , Análise Espectral , Animais , Cadáver , Humanos , Sensibilidade e Especificidade , Suínos
6.
PLoS One ; 12(12): e0189963, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261769

RESUMO

BACKGROUND: For patients with suspicious lung lesions found on chest x-ray or CT, endo/trans- bronchial biopsy of the lung is the preferred method for obtaining a diagnosis. With the addition of new screening programs, a higher number of patients will require diagnostic biopsy which will prove even more challenging due to the small size of lesions found with screening. There are many endobronchial tools available on the market today and a wide range of new tools under investigation to improve diagnostic yield. However, there is little information available about the optimal tool size required to reach the majority of lesions, especially peripheral ones. In this manuscript we investigate the percentage of lesions that can be reached for various diameter tools if the tools remain inside the airways (i.e. endobronchial biopsy) and the distance a tool must travel "off-road" (or outside of the airways) to reach all lesions. METHODS AND FINDINGS: To further understand the distribution of lung lesions with respect to airway sizes and distances from the airways, six 3D models of the lung were generated. The airways were modeled at two different respiratory phases (inspiration and expiration). Three sets of 1,000 lesions were randomly distributed throughout the lung for each respiratory phase. The simulations showed that the percentage of reachable lesions decreases with increasing tool diameter and decreasing lesion diameter. A 1mm diameter tool will reach <25% of 1cm lesions if it remains inside the airways. To reach all 1cm lesions this 1mm tool would have to navigate through the parenchyma up to 8.5mm. CT scans of 21 patient lesions confirm these results reasonably well. CONCLUSIONS: The smaller the tool diameter the more likely it will be able to reach a lung lesion, whether it be for diagnostic biopsy, ablation, or resection. However, even a 1mm tool is not small enough to reach the majority of small (1-2cm) lesions. Therefore, it is necessary for endobronchial tools to be able to navigate through the parenchyma to reach the majority of lesions.


Assuntos
Biópsia/instrumentação , Brônquios/patologia , Modelos Biológicos , Brônquios/diagnóstico por imagem , Simulação por Computador , Desenho de Equipamento , Humanos , Tomografia Computadorizada por Raios X
7.
J Biomed Opt ; 21(9): 97004, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637008

RESUMO

There is a strong need to develop clinical instruments that can perform rapid tissue assessment at the tip of smart clinical instruments for a variety of oncological applications. This study presents the first in vivo real-time tissue characterization during 24 liver biopsy procedures using diffuse reflectance (DR) spectroscopy at the tip of a core biopsy needle with integrated optical fibers. DR measurements were performed along each needle path, followed by biopsy of the target lesion using the same needle. Interventional imaging was coregistered with the DR spectra. Pathology results were compared with the DR spectroscopy data at the final measurement position. Bile was the primary discriminator between normal liver tissue and tumor tissue. Relative differences in bile content matched with the tissue diagnosis based on histopathological analysis in all 24 clinical cases. Continuous DR measurements during needle insertion in three patients showed that the method can also be applied for biopsy guidance or tumor recognition during surgery. This study provides an important validation step for DR spectroscopy-based tissue characterization in the liver. Given the feasibility of the outlined approach, it is also conceivable to make integrated fiber-optic tools for other clinical procedures that rely on accurate instrument positioning.


Assuntos
Neoplasias do Colo/patologia , Tecnologia de Fibra Óptica/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagem Óptica/métodos , Análise Espectral/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Biópsia Guiada por Imagem , Fígado/patologia , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade
8.
Lung Cancer ; 98: 62-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27393508

RESUMO

OBJECTIVES: Difficulties in obtaining a representative tissue sample are a major obstacle in timely selecting the optimal treatment for patients with lung cancer or other malignancies. Having a modality to provide needle guidance and confirm the biopsy site selection could be of great clinical benefit, especially when small masses are targeted. The objective of this study was to evaluate whether diffuse reflectance spectroscopy (DRS) at the tip of a core biopsy needle can be used for biopsy site confirmation in real time, thereby enabling optimized biopsy acquisition and improving diagnostic capability. MATERIALS AND METHODS: We included a total of 23 patients undergoing a routine computed tomography (CT) guided transthoracic needle biopsy of a lesion suspected for lung cancer or metastatic disease. DRS measurements were acquired during needle insertion and clinically relevant parameters were extracted from the spectral data along the needle paths. Histopathology results were compared with the DRS data at the final measurement position. RESULTS: Analysis of the collective data acquired from all enrolled subjects showed significant differences (p<0.01) for blood content, stO2, water content, and scattering amplitude. The identified spectral contrast matched the final pathology in 20 out of 22 clinical cases that could be used for analysis, which corresponds with an overall diagnostic performance of 91%. Three cases underlined the importance of adequate reference measurements and the need for real time diagnostic feedback. Continuous real time DRS measurements performed during a biopsy procedure in one patient provided clear information with respect to the variation in tissue and allowed identification of the tumour boundary. CONCLUSIONS: The presented technology creates a basis for the design and clinical implementation of integrated fibre-optic tools for a variety of minimal invasive applications.


Assuntos
Biópsia Guiada por Imagem , Neoplasias Pulmonares/diagnóstico , Imagem de Difusão por Ressonância Magnética , Humanos , Biópsia Guiada por Imagem/métodos , Biópsia Guiada por Imagem/normas , Imagem Óptica , Tomografia Computadorizada por Raios X , Carga Tumoral
9.
J Transl Med ; 13: 380, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667226

RESUMO

BACKGROUND: Regional anesthesia has several advantages over general anesthesia but requires accurate needle placement to be effective. To achieve accurate placement, a needle equipped with optical fibers that allows tissue discrimination at the needle tip based on optical spectroscopy is proposed. This study investigates the sensitivity and specificity with which this optical needle can discriminate nerves from the surrounding tissues making use of different classification methods. METHODS: Diffuse reflectance spectra were acquired from 1563 different locations from 19 human cadavers in the wavelength range of 400-1710 nm; measured tissue types included fascicular tissue of the nerve, muscle, sliding fat and subcutaneous fat. Physiological parameters of the tissues were derived from the measured spectra and part of the data was directly compared to histology. Various classification methods were then applied to the derived parameter dataset to determine the accuracy with which fascicular tissue of the nerve can be discriminated from the surrounding tissues. RESULTS: From the parameters determined from the measured spectra of the various tissues surrounding the nerve, fat content, blood content, beta-carotene content and scattering were most distinctive when comparing fascicular and non-fascicular tissue. Support Vector Machine classification with a combination of feature selections performed best in discriminating fascicular nerve tissue from the surrounding tissues with a sensitivity and specificity around 90 %. CONCLUSIONS: This study showed that spectral tissue sensing, based on diffuse reflectance spectroscopy at the needle tip, is a promising technique to discriminate fascicular tissue of the nerve from the surrounding tissues. The technique may therefore improve accurate needle placement near the nerve which is necessary for effective nerve blocks in regional anesthesia.


Assuntos
Anestesia por Condução , Sistema Nervoso/anatomia & histologia , Análise Espectral/métodos , Humanos
10.
J Biophotonics ; 8(1-2): 9-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24760790

RESUMO

Diffuse reflectance spectroscopy is a rapidly growing technology in the biophotonics community where it has shown promise in its ability to classify different tissues. In the steady-state domain a wide spectrum of clinical applications is supported with this technology ranging from diagnostic to guided interventions. Diffuse reflectance spectra provide a wealth of information about tissue composition; however, extracting biologically relevant information from the spectra in terms of chromophores may be more useful to gain acceptance into the clinical community. The chromophores that absorb light in the visible and near infrared wavelengths can provide information about tissue composition. The key characteristics of these chromophores and their relevance in different organs and clinical applications is the focus of this review, along with translating their use to the clinic.


Assuntos
Análise Espectral/métodos , Animais , Cor , Humanos , Fenômenos Ópticos , Pigmentação
11.
PLoS One ; 8(7): e69906, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922850

RESUMO

We demonstrate a strategy to "sense" the micro-morphology of a breast tumor margin over a wide field of view by creating quantitative hyperspectral maps of the tissue optical properties (absorption and scattering), where each voxel can be deconstructed to provide information on the underlying histology. Information about the underlying tissue histology is encoded in the quantitative spectral information (in the visible wavelength range), and residual carcinoma is detected as a shift in the histological landscape to one with less fat and higher glandular content. To demonstrate this strategy, fully intact, fresh lumpectomy specimens (n = 88) from 70 patients were imaged intra-operatively. The ability of spectral imaging to sense changes in histology over large imaging areas was determined using inter-patient mammographic breast density (MBD) variation in cancer-free tissues as a model system. We discovered that increased MBD was associated with higher baseline ß-carotene concentrations (p = 0.066) and higher scattering coefficients (p = 0.007) as measured by spectral imaging, and a trend toward decreased adipocyte size and increased adipocyte density as measured by histological examination in BMI-matched patients. The ability of spectral imaging to detect cancer intra-operatively was demonstrated when MBD-specific breast characteristics were considered. Specifically, the ratio of ß-carotene concentration to the light scattering coefficient can report on the relative amount of fat to glandular density at the tissue surface to determine positive margin status, when baseline differences in these parameters between patients with low and high MBD are taken into account by the appropriate selection of threshold values. When MBD was included as a variable a priori, the device was estimated to have a sensitivity of 74% and a specificity of 86% in detecting close or positive margins, regardless of tumor type. Superior performance was demonstrated in high MBD tissue, a population that typically has a higher percentage of involved margins.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Imagem Óptica , Adipócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Demografia , Feminino , Humanos , Mamografia , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade , beta Caroteno/metabolismo
12.
PLoS One ; 7(12): e51418, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251526

RESUMO

Breast conserving surgery (BCS) is a recommended treatment for breast cancer patients where the goal is to remove the tumor and a surrounding rim of normal tissue. Unfortunately, a high percentage of patients return for additional surgeries to remove all of the cancer. Post-operative pathology is the gold standard for evaluating BCS margins but is limited due to the amount of tissue that can be sampled. Frozen section analysis and touch-preparation cytology have been proposed to address the surgical needs but also have sampling limitations. These issues represent an unmet clinical need for guidance in resecting malignant tissue intra-operatively and for pathological sampling. We have developed a quantitative spectral imaging device to examine margins intra-operatively. The context in which this technology is applied (intra-operative or post-operative setting) is influenced by time after excision and surgical factors including cautery and the presence of patent blue dye (specifically Lymphazurin™, used for sentinel lymph node mapping). Optical endpoints of hemoglobin ([THb]), fat ([ß-carotene]), and fibroglandular content via light scattering (<µ(s)'>) measurements were quantified from diffuse reflectance spectra of lumpectomy and mastectomy specimens using a Monte Carlo model. A linear longitudinal mixed-effects model was used to fit the optical endpoints for the cautery and kinetics studies. Monte Carlo simulations and tissue mimicking phantoms were used for the patent blue dye experiments. [THb], [ß-carotene], and <µ(s)'> were affected by <3.3% error with <80 µM of patent blue dye. The percent change in [ß-carotene], <µ(s)'>, and [ß-carotene]/<µ(s)'> was <14% in 30 minutes, while percent change in [THb] was >40%. [ß-carotene] and [ß-carotene]/<µ(s)'> were the only parameters not affected by cautery. This work demonstrates the importance of understanding the post-excision kinetics of ex-vivo tissue and the presence of cautery and patent blue dye for breast tumor margin assessment, to accurately interpret data and exploit underling sources of contrast.


Assuntos
Neoplasias da Mama/cirurgia , Cauterização , Corantes/química , Imagem Óptica , Corantes de Rosanilina/química , Neoplasias da Mama/patologia , Feminino , Humanos , Mastectomia , Mastectomia Segmentar
13.
Opt Express ; 18(8): 8058-76, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588651

RESUMO

As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/normas , Cuidados Intraoperatórios/instrumentação , Dispositivos Ópticos , Análise Espectral/instrumentação , Simulação por Computador , Feminino , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
IEEE J Sel Top Quantum Electron ; 16(3): 530-544, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21544237

RESUMO

Breast conserving surgery, in which the breast tumor and surrounding normal tissue are removed, is the primary mode of treatment for invasive and in situ carcinomas of the breast, conditions that affect nearly 200,000 women annually. Of these nearly 200,000 patients who undergo this surgical procedure, between 20-70% of them may undergo additional surgeries to remove tumor that was left behind in the first surgery, due to the lack of intra-operative tools which can detect whether the boundaries of the excised specimens are free from residual cancer. Optical techniques have many attractive attributes which may make them useful tools for intra-operative assessment of breast tumor resection margins. In this manuscript, we discuss clinical design criteria for intra-operative breast tumor margin assessment, and review optical techniques appied to this problem. In addition, we report on the development and clinical testing of quantitative diffuse reflectance imaging (Q-DRI) as a potential solution to this clinical need. Q-DRI is a spectral imaging tool which has been applied to 56 resection margins in 48 patients at Duke University Medical Center. Clear sources of contrast between cancerous and cancer-free resection margins were identified with the device, and resulted in an overall accuracy of 75% in detecting positive margins.

15.
Artigo em Inglês | MEDLINE | ID: mdl-19964903

RESUMO

Diffuse reflectance spectroscopy of tissue allows quantification of underlying physiological and morphological changes associated with cancer, provided that the absorption and scattering properties of the tissue can be effectively decoupled. A particular application of interest for tissue reflectance spectroscopy in the UV-VIS is intraoperative detection of residual cancer at the margins of excised breast tumors, which could prevent costly and unnecessary repeat surgeries. Our multi-disciplinary group has developed an optical imaging device, which employs a model-based algorithm for quantification of tissue optical properties, and is capable of surveying the entire specimen surface down to a depth of 1-2 mm, all within a short time as required for intraoperative use. In an ongoing IRB-approved study, reflectance spectral images were acquired from 55 margins in 48 patients. Conversion of the spectral images to quantitative tissue parameter maps was facilitated by a fast scalable inverse Monte-Carlo model. Data from margin parameter images were reduced to image-descriptive scalar values and compared to gold-standard margin pathology. Use of a decision-tree based classification algorithm on the two most significant optical parameters resulted in a sensitivity of 79% and specificity of 67% for detection of residual tumor of all pathologic variants, with an 89% sensitivity for ductal carcinoma in situ alone. Preliminary data from this ongoing clinical study suggest that this technology could significantly reduce the number of unnecessary repeat breast conserving surgeries annually.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Diagnóstico por Imagem/métodos , Cuidados Intraoperatórios/métodos , Análise Espectral/métodos , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Feminino , Humanos
16.
Am J Surg ; 198(4): 566-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19800470

RESUMO

BACKGROUND: In women undergoing breast conserving surgery (BCS), up to 60% can require re-excision. Our objective is to develop an optically based technology which can differentiate benign from malignant breast tissues intraoperatively through differences in tissue composition factors. METHODS: A prospective study of optical imaging of BCS margins is being performed. Optical images are transformed into tissue composition maps with parameters of total hemoglobin concentration, b-carotene concentration and scattering. The predicted outcome is then compared to the margin-level pathology. RESULTS: Fifty-five margins from 48 patients have undergone assessment. Within 34 specimens with pathologically confirmed positive margins, the ratio map of b-carotene/scattering showed the most significant difference reflecting a decrease in adipose and an increase in cell density within malignant margins (p=.002). These differences were notable in both in-situ and invasive disease. CONCLUSIONS: We present a novel optical spectral imaging device that provides a rapid, non-destructive assay of the tissue composition of breast tumor margins.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia Segmentar , Dispositivos Ópticos , Valor Preditivo dos Testes , Reoperação , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA