Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Mol Model ; 30(8): 257, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976043

RESUMO

CONTEXT: The paper considers the features of the structure and dipole moments of several amino acids and their dipeptides which play an important role in the formation of the peptide nanotubes based on them. The influence of the features of their chirality (left L and right D) and the alpha-helix conformations of amino acids are taken into account. In particular, amino acids with aromatic rings, such as phenylalanine (Phe/F), and branched-chain amino acids (BCAAs)-leucine (Leu/L) and isoleucine (Ile/I)-as well as corresponding dipeptides (diphenylalanine (FF), dileucine (LL), and diisoleucine (II)) are considered. The main features and properties of these dipeptide structures and peptide nanotubes (PNTs), based on them, are investigated using computational molecular modeling and quantum-chemical semi-empirical calculations. Their polar, piezoelectric, and photoelectronic properties and features are studied in detail. The results of calculations of dipole moments and polarization, as well as piezoelectric coefficients and band gap width, for different types of helical peptide nanotubes are presented. The calculated values of the chirality indices of various nanotubes are given, depending on the chirality of the initial dipeptides-the results obtained are consistent with the law of changes in the type of chirality as the hierarchy of molecular structures becomes more complex. The influence of water molecules in the internal cavity of nanotubes on their physical properties is estimated. A comparison of the results of these calculations by various computational methods with the available experimental data is presented and discussed. METHOD: The main tool for molecular modeling of all studied nanostructures in this work was the HyperChem 8.01 software package. The main approach used here is the Hartree-Fock (HF) self-consistent field (SCF) with various quantum-chemical semi-empirical methods (AM1, PM3, RM1) in the restricted Hartree-Fock (RHF) and in the unrestricted Hartree-Fock (UHF) approximations. Optimization of molecular systems and the search for their optimal geometry is carried out in this work using the Polak-Ribeire algorithm (conjugate gradient method), which determines the optimized geometry at the point of their minimum total energy. For such optimized structures, dipole moments D and electronic energy levels (such as EHOMO and ELUMO), as well as the band gap Eg = ELUMO - EHOMO, were then calculated. For each optimized molecular structure, the volume was calculated using the QSAR program implemented also in the HyperChem software package.


Assuntos
Aminoácidos , Dipeptídeos , Modelos Moleculares , Nanotubos de Peptídeos , Dipeptídeos/química , Nanotubos de Peptídeos/química , Aminoácidos/química
2.
Materials (Basel) ; 17(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38255584

RESUMO

Magnesium, as one of the most abundant cations in the human body, plays an important role in both physiological and pathological processes. In this study, it was shown that a promising biomedical material, Mg-substituted hydroxyapatite (Mg-HA), can be synthesized via a fast mechanochemical method. For this method, the nature of magnesium-containing carriers was shown to be important. When using magnesium oxide as a source of magnesium, the partial insertion of magnesium cations into the apatite structure occurs. In contrast, when magnesium hydroxide or monomagnesium phosphate is used, single-phase Mg-HA is formed. Both experimental and theoretical investigations showed that an increase in the Mg content leads to a decrease in the lattice parameters and unit cell volume of Mg-HA. Density functional theory calculations showed the high sensitivity of the lattice parameters to the crystallographic position of the calcium site substituted by magnesium. It was shown experimentally that the insertion of magnesium cations decreases the thermal stability of hydroxyapatite. The thermal decomposition of Mg-HA leads to the formation of a mixture of stoichiometric HA, magnesium oxide, and Mg-substituted tricalcium phosphate phases.

3.
Materials (Basel) ; 16(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687640

RESUMO

Hydroxyapatite (HAP) is the main mineral component of bones and teeth. It is widely used in medicine as a bone filler and coating for implants to promote new bone growth. Ion substitutions into the HAP structure highly affect its properties. One of the most important substituents is magnesium. This paper presents new results obtained using high-precision hybrid density functional theory calculations for Mg/Ca substitutions in HAP in a wide magnesium concentration range within a 2 × 2 × 2 supercell model. Experimental data on the mechanochemical synthesis of HAP-Mg samples with different Mg concentrations are also presented. A comparison between the experiment and the theory showed good agreement: the HAP-Mg unit cell parameters and volume decreased with increasing degree of Mg/Ca substitution. The changes in the distances between the Ca and O, Ca and H, and Mg and O ions upon Mg/Ca substitution in different calcium positions was analyzed. The resulting asymmetry and distortion of the cell parameters were evaluated. It was shown that bulk modulus, energy levels, and band gap depend on the degree of Mg substitutions in the Ca1 and Ca2 positions. The formation energies of Mg/Ca substitutions showed non-monotonic behavior that was different for Ca1 and Ca2 positions. The Ca2 position had a slightly higher probability (~5 meV/f.u.) of substitution than Ca1 position at a Mg concentration x = 0.5. At x = 1, substitution in both positions can coexist. The simulated IR spectra for different Mg/Ca substitutions showed that Mg in the Ca2 position changes the IR spectrum more significantly than Mg in the Ca1 position. Similar changes were recorded in the IR spectra of the synthesized samples. The electronic structure is shown to be sensitive to the number and position of substitutions, which may be used to tweak the optical properties of the HAP-Mg material.

4.
J Mol Model ; 28(4): 81, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247081

RESUMO

The work is devoted to computer studies of the structural and physical properties of such self-organizing structures as peptide nanotubes (PNT) based on diphenylalanine (FF) dipeptide with different initial isomers of the left (L-FF) and right (D-FF) chiralities of these dipeptides. The structures under study are considered both with empty anhydrous and with internal cavities filled with water molecules. Molecular models of both chiralities are investigated using quantum-chemical DFT and semi-empirical methods, which are in consistent with the known experimental data. To study the effect of nano-sized clusters of water molecules embedded in the inner hydrophilic cavity on the properties of nanotubes (including the changes in their dipole moments and polarizations), as well as the changes in the structure and properties of water clusters themselves (their own dipole moments and polarizations), the surfaces of internal cavities of nanotubes and outer surfaces of water cluster structures for both types of chirality are analyzed. A specially developed method of visual differential analysis of structural features of (bio)macromolecular structures is applied for these studies. The results obtained of a number of physical properties (interacting energies, dipole moments, polarization values) are given for various cases and analyzed in comparison with the known data. These data are necessary for analyzing the interactions of water molecules with hydrophilic parts of nanotube molecules based on FF, such as COO- and NH3 + , since they determine many properties of the structures under study. The data obtained are useful for further analysis of the possible adhesion and capture of medical molecular components by active layers of FF-based PNT, which can be designed for creating capsules for targeted delivery of pharmaceuticals and drugs on their basis.


Assuntos
Nanotubos de Peptídeos , Nanotubos , Dipeptídeos , Modelos Moleculares , Nanotubos/química , Nanotubos de Peptídeos/química , Fenilalanina/química
5.
J Mol Model ; 26(11): 326, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140163

RESUMO

DFT (VASP) and semi-empirical (HyperChem) calculations for the L- and D-chiral diphenylalanine (L-FF and D-FF) nanotube (PNT) structures, empty and filled with water/ice clusters, are presented and analyzed. The results obtained show that after optimization, the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like-cluster obtained after optimization inside L-FF and D-FF PNT and total L-FF and D-FF PNT with embedded water/ice cluster are discussed.


Assuntos
Simulação por Computador , Modelos Moleculares , Nanotubos de Peptídeos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Fenilalanina/química , Termodinâmica
6.
J Mol Model ; 25(7): 199, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240406

RESUMO

The structure and properties of diphenylalanine (FF) peptide nanotubes (PNT) based on phenylalanine were investigated by various molecular modeling methods. The main approach employed semi-empirical quantum-chemical methods (PM3 and AM1). Ab initio, density functional theory methods and molecular mechanical approaches were also used. Both model structures and structures extracted from experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by natural self-assembly revealed important differences depending on chirality: D and L. In both the cases, the effect of chirality on the results of self-assembly of FF PNT was established: PNT based on the D-FF has large condensation energy E0 in the transverse direction, and form thicker and shorter PNT bundles than those based on L-FF. A topological difference was established: model PNT were optimized into structures consisting of rings, while naturally self-assembled PNT consisted of helical turns. The latter nanotubes differed from the original L-FF and D-FF and formed helix structures of different chirality signs in accordance with the alternation rule of chirality due to macromolecule hierarchy. A topological transition between ring and helix turn PNT structures is discussed: self-assembled natural helix structures are favorable and their energy is lower by a value of the order of one to several eV.


Assuntos
Modelos Moleculares , Conformação Molecular , Nanotubos de Peptídeos/química , Fenilalanina/análogos & derivados , Algoritmos , Teoria da Densidade Funcional , Dipeptídeos , Modelos Teóricos , Nanoestruturas/química , Fenilalanina/química
7.
J Chem Phys ; 148(15): 154706, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29679976

RESUMO

Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

8.
J Mol Model ; 23(4): 128, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321656

RESUMO

Molecular modeling of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene (G) or graphene oxide (GO) were performed using the semi-empirical quantum approximation PM3 in HyperChem. The piezo properties of the composites were analyzed and compared with experimental data obtained for P(VDF-TrFE)-GO films. Qualitative agreement was obtained between the results of the modeling and the experimental results in terms of the properties of the measured effective piezoelectric coefficient d 33eff and its decrease in the presence of G/GO in comparison with the average computed piezoelectric coefficient . When models incorporating one or several G layers with 54 carbon atoms were investigated, the average piezoelectric coefficient was found to decrease to -9.8 pm/V for the one-sided model PVDF/G and to -18.98 pm/V for the sandwich model G/PVDF/G as compared with the calculated piezoelectric coefficient for pure PVDF ( = -42.2 pm/V computed in present work, and = -38.5 pm/V, obtained from J Mol Model 35 (2013) 19:3591-3602). When models incorporating one or several GO layers with 98 carbon atoms were considered, the piezoelectric coefficient was found to decrease to -14.6 pm/V for the one-sided PVDF/GO model and to -29.8 pm/V for the sandwich GO/PVDF/GO model as compared with the same calculated piezoelectric coefficient for pure PVDF.

9.
J Phys Chem B ; 118(31): 9119-27, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25006754

RESUMO

This paper investigates the application of an original combined approach of molecular and Brownian dynamic methods with quantum chemistry calculations for modeling the process of conductance of ion channels using purinergic P2X family receptors P2X2, P2X4, and P2X7 as a case study. A simplified model of the ionic channel in the lipid bilayer has been developed. A high level of conductance (30 pS) of P2X2 ionic channel together with the key role of Asp349 in forming the selectivity filter of P2X2 has been shown by using this approach. Calculated P2X2 permeability to monovalent cations Li(+), Na(+), and K(+) conforms to the free diffusion coefficient of these ions, which shows the low selectivity of P2X2 ionic channel.


Assuntos
Condutividade Elétrica , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X7/química , Algoritmos , Cátions/química , Difusão , Elétrons , Lítio/química , Permeabilidade , Potássio/química , Teoria Quântica , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Sódio/química
10.
J Mol Model ; 19(9): 3591-602, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729009

RESUMO

In this work, computational molecular modeling and exploration was applied to study the nature of the negative piezoelectric effect in the ferroelectric polymer polyvinylidene fluoride (PVDF), and the results confirmed by actual nanoscale measurements. First principle calculations were employed, using various quantum-chemical methods (QM), including semi-empirical (PM3) and various density functional theory (DFT) approaches, and in addition combined with molecular mechanics (MM) methods in complex joint approaches (QM/MM). Both PVDF molecular chains and a unit cell of crystalline ß-phase PVDF were modeled. This computational molecular exploration clearly shows that the nature of the so-called negative piezo-electric effect in the ferroelectric PVDF polymer has a self-consistent quantum nature, and is related to the redistribution of the electron molecular orbitals (wave functions), leading to the shifting of atomic nuclei and reorganization of all total charges to the new, energetically optimal positions, under an applied electrical field. Molecular modeling and first principles calculations show that the piezoelectric coefficient d 33 has a negative sign, and its average values lies in the range of d 33 ~ -16.6 to -19.2 pC/N (or pm/V) (for dielectric permittivity ε = 5) and in the range of d 33 ~ -33.5 to -38.5 pC/N (or pm/V) (for ε = 10), corresponding to known data, and allowing us to explain the reasons for the negative sign of the piezo-response. We found that when a field is applied perpendicular to the PVDF chain length, as polarization increases the chain also stretches, increasing its length and reducing its height. For computed value of ε ~ 5 we obtained a value of d31 ~ +15.5 pC/N with a positive sign. This computational study is corroborated by measured nanoscale data obtained by atomic force and piezo-response force microscopy (AFM/PFM). This study could be useful as a basis for further insights into other organic and molecular ferroelectrics.


Assuntos
Modelos Moleculares , Polímeros/química , Polivinil/química , Modelos Químicos , Conformação Molecular
11.
Front Biosci ; 8: s1356-70, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12957850

RESUMO

Several types of ion channels, the proteins responsible for the transport of ions across cell membranes, are described. Those of most interest are responsible for the functioning of nerve cells, and are voltage gated. Here, we propose a model for voltage gating that depends on proton transport. There are also channels that are proton-gated, of which some are bacterial. For one, a structure is known in the closed state, the KcsA channel (1). The proton gating of this channel suggests a part of the overall gating model we propose. Other bacterial channel structures are also known, but none that are relevant here, at least in one case because it appears to be in the open state. Voltage-gated channels of eukaryotes open in response to the depolarization of the membrane. It appears that there is some analogy in the structure of the voltage-gated channels to the structure of the smaller bacterial channels, including the one that is proton-gated. There is also significant experimental work in the literature on the nature of the gating current, a capacitative current that precedes the opening of the channel. The model we provide is based on the known properties of channels; in this model, voltage gating consists of three stages: first, the tunneling of a proton as depolarization begins, to initiate the sequence; second, proton transport along a sequence of (mostly) arginines, which is postulated to bring a proton to a critical gating region, where, third, a strong, short, hydrogen bond is weakened by the added proton, allowing the four domains to separate. The separation of the domains allows ions to pass through, and thus constitutes the opening of the channel. An analogy to the behavior of ferroelectrics is also described.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Prótons , Água/química , Animais , Hidrogênio/química , Ligação de Hidrogênio , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA