Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Entomol ; 52(4): 618-626, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37417547

RESUMO

Nitrogen (N) is a key nutrient required by all living organisms for growth and development, but is a limiting resource for many organisms. Organisms that feed on material with low N content, such as wood, might be particularly prone to N limitation. In this study, we investigated the degree to which the xylophagous larvae of the stag beetle Ceruchus piceus (Weber) use associations with N-fixing bacteria to acquire N. We paired acetylene reduction assays by cavity ring-down absorption spectroscopy (ARACAS) with 15N2 incubations to characterize rates of N fixation within C. piceus. Not only did we detect significant N fixation activity within C. piceus larvae, but we calculated a rate that was substantially higher than most previous reports for N fixation in insects. While taking these measurements, we discovered that N fixation within C. piceus can decline rapidly in a lab setting. Consequently, our results demonstrate that previous studies, which commonly keep insects in the lab for long periods of time prior to and during measurement, may have systematically under-reported rates of N fixation in insects. This suggests that within-insect N fixation may contribute more to insect nutrition and ecosystem-scale N budgets than previously thought.


Assuntos
Besouros , Animais , Ecossistema , Fixação de Nitrogênio , Nitrogênio , Insetos , Larva
2.
Nat Plants ; 8(3): 209-216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115725

RESUMO

The future of the land carbon sink depends on the availability of nitrogen (N)1,2 and, specifically, on symbiotic N fixation3-8, which can rapidly alleviate N limitation. The temperature response of symbiotic N fixation has been hypothesized to explain the global distribution of N-fixing trees9,10 and is a key part of some terrestrial biosphere models (TBMs)3,7,8, yet there are few data to constrain the temperature response of symbiotic N fixation. Here we show that optimal temperatures for N fixation in four tree symbioses are in the range 29.0-36.9 °C, well above the 25.2 °C optimum currently used by TBMs. The shape of the response to temperature is also markedly different to the function used by TBMs (asymmetric rather than symmetric). We also show that N fixation acclimates to growing temperature (hence its range of optimal temperatures), particularly in our two tropical symbioses. Surprisingly, optimal temperatures were 5.2 °C higher for N fixation than for photosynthesis, suggesting that plant carbon and N gain are decoupled with respect to temperature. These findings may help explain why N-fixing tree abundance is highest where annual maximum temperatures are >35 °C (ref. 10) and why N-fixing symbioses evolved during a warm period in the Earth's history11,12. Everything else being equal, our findings indicate that climate warming will probably increase N fixation, even in tropical ecosystems, in direct contrast to past projections8.


Assuntos
Ecossistema , Fixação de Nitrogênio , Sequestro de Carbono , Temperatura , Árvores/fisiologia
3.
Am Nat ; 198(6): E198-E214, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762566

RESUMO

AbstractNitrogen-fixing trees are a major potential source of nitrogen in terrestrial ecosystems. The degree to which they persist in older forests has considerable implications for forest nitrogen budgets. We characterized nitrogen-fixing tree abundance across stand age in the contiguous United States and analyzed a theoretical model to help understand competitive outcomes and successional trajectories of nitrogen-fixing and nonfixing trees. Nitrogen-fixing tree abundance is bimodal in all regions except the northeastern United States, even in older forests, suggesting that competitive exclusion (including priority effects) is more common than coexistence at the spatial scale of our analysis. Our model analysis suggests conditions under which alternative competitive outcomes are possible and when they are transient (lasting decades or centuries) versus persistent (millennia). Critically, the timescale of the feedbacks between nitrogen fixation and soil nitrogen supply, which is thought to drive the exclusion of nitrogen-fixing trees through succession, can be long. Therefore, the long transient outcomes of competition are more relevant for real forests than the long-term equilibrium. Within these long-term transients, the background soil nitrogen supply is a major determinant of competitive outcomes. Consistent with the expectations of resource ratio theory, competitive exclusion is more likely at high and low nitrogen supply, while intermediate nitrogen supply makes coexistence or priority effects possible. However, these outcomes are modified by the nitrogen fixation strategy: obligate nitrogen fixation makes coexistence more likely than priority effects, compared with perfectly facultative fixation. These results advance our understanding of the successional trajectories of nitrogen-fixing trees and their effects on ecosystem development in secondary succession.


Assuntos
Ecossistema , Árvores , Florestas , Nitrogênio , Fixação de Nitrogênio , Solo
4.
Nat Ecol Evol ; 2(9): 1393-1402, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013132

RESUMO

Scientific communication relies on clear presentation of data. Logarithmic scales are used frequently for data presentation in many scientific disciplines, including ecology, but the degree to which they are correctly interpreted by readers is unclear. Analysing the extent of log scales in the literature, we show that 22% of papers published in the journal Ecology in 2015 included at least one log-scaled axis, of which 21% were log-log displays. We conducted a survey that asked members of the Ecological Society of America (988 responses, and 623 completed surveys) to interpret graphs that were randomly displayed with linear-linear or log-log axes. Many more respondents interpreted graphs correctly when the graphs had linear-linear axes than when they had log-log axes: 93% versus 56% for our all-around metric, although some of the individual item comparisons were even more skewed (for example, 86% versus 9% and 88% versus 12%). These results suggest that misconceptions about log-scaled data are rampant. We recommend that ecology curricula include explicit instruction on how to interpret log-scaled axes and equations, and we also recommend that authors take the potential for misconceptions into account when deciding how to visualize data.


Assuntos
Bibliometria , Ecologia/métodos , Conceitos Matemáticos , Projetos de Pesquisa , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Publicações Periódicas como Assunto , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA