Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Cell Dev Biol ; 10: 878142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517494

RESUMO

Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as "the establishment of polarity," newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.

2.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455998

RESUMO

Neurons are highly polarized cells requiring precise regulation of trafficking and targeting of membrane proteins to generate and maintain different and specialized compartments, such as axons and dendrites. Disruption of the Golgi apparatus (GA) secretory pathway in developing neurons alters axon/dendritic formation. Therefore, detailed knowledge of the mechanisms underlying vesicles exiting from the GA is crucial for understanding neuronal polarity. In this study, we analyzed the role of Brefeldin A-Ribosylated Substrate (CtBP1-S/BARS), a member of the C-terminal-binding protein family, in the regulation of neuronal morphological polarization and the exit of membrane proteins from the Trans Golgi Network. Here, we show that BARS is expressed during neuronal development in vitro and that RNAi suppression of BARS inhibits axonal and dendritic elongation in hippocampal neuronal cultures as well as largely perturbed neuronal migration and multipolar-to-bipolar transition during cortical development in situ. In addition, using plasma membrane (PM) proteins fused to GFP and engineered with reversible aggregation domains, we observed that expression of fission dominant-negative BARS delays the exit of dendritic and axonal membrane protein-containing carriers from the GA. Taken together, these data provide the first set of evidence suggesting a role for BARS in neuronal development by regulating post-Golgi membrane trafficking.


Assuntos
Complexo de Golgi , Neurônios , Axônios/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Rede trans-Golgi/metabolismo
3.
Int J Surg Case Rep ; 85: 106171, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34247123

RESUMO

INTRODUCTION AND IMPORTANCE: Gallstone ileus is an uncommon complication of cholelithiasis. It is usually presented as a small bowel obstruction. Elderly patients are commonly affected. The diagnosis is challenging, since needs a high index of suspicion and imagenology is key. Surgery is the mainstay management, most commonly performed by laparotomy, but laparoscopy is summing cases. Nevertheless the approach is still controversial. We report a gallstone ileus case, that was managed totally laparoscopic in our medium complex public institution. CASE PRESENTATION: An 71 years-old male patient, with symptomatic cholelithiasis, consulted in emergency department with symptoms and signs of small bowel obstruction. Computed tomography of abdomen and pelvis showed the classical Rigler's triad. Totally laparoscopic enterolithotomy alone was performed successfully. Postoperative evolution was without incidents, being discharge at fifth day. CLINICAL DISCUSSION: Gallstone ileus represents around 0,3-0,5% of cholelithiasis complications. Mostly affect elderly women patients, with comorbidities. Mortality and morbidity is still high nowadays. The classical management of gallstone ileus is the open surgery, but the laparoscopic approach has been described and it can be done. CONCLUSION: The laparoscopic management of gallstone ileus is effective and secure procedure and seems reasonable to attempt if the conditions and skills are available.

4.
Nano Lett ; 21(5): 2296-2303, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621102

RESUMO

Förster resonance energy transfer (FRET) imaging methods provide unique insight into the spatial distribution of energy transfer and (bio)molecular interaction events, though they deliver average information for an ensemble of events included in a diffraction-limited volume. Coupling super-resolution fluorescence microscopy and FRET has been a challenging and elusive task. Here, we present STED-FRET, a method of general applicability to obtain super-resolved energy transfer images. In addition to higher spatial resolution, STED-FRET provides a more accurate quantification of interaction and has the capacity of suppressing contributions of noninteracting partners, which are otherwise masked by averaging in conventional imaging. The method capabilities were first demonstrated on DNA-origami model systems, verified on uniformly double-labeled microtubules, and then utilized to image biomolecular interactions in the membrane-associated periodic skeleton (MPS) of neurons.

5.
Nat Commun ; 12(1): 517, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483489

RESUMO

Single-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule's image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.


Assuntos
Fluorescência , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Imagem Individual de Molécula/métodos , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Microtúbulos/metabolismo , Fotometria/métodos
6.
FEBS J ; 288(22): 6353-6364, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33332753

RESUMO

Mechanisms supporting axon growth and the establishment of neuronal polarity have remained largely disconnected from their genetic and epigenetic fundamentals. Recently, post-transcriptional modifications of histones involved in chromatin folding and transcription, and microRNAs controlling translation have emerged as regulators of axonal specification, growth, and guidance. In this article, we review novel evidence supporting the concept that epigenetic mechanisms work at both transcriptional and post-transcriptional levels to shape axons. We also discuss the role of splicing on axonal growth, as one of the most (if not the most) powerful post-transcriptional mechanism to diversify genetic information. Overall, we think exploring the gap between epigenetics and axonal growth raises new questions and perspectives to the development of axons in physiological and pathological contexts.


Assuntos
Epigênese Genética/genética , Histonas/genética , MicroRNAs/genética , Animais , Humanos
7.
STAR Protoc ; 1(3): 100114, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377010

RESUMO

The establishment of polarity is crucial for the physiology and wiring of neurons. Therefore, monitoring the axo-dendritic specification allows the mechanisms and signals associated with development, growth, and disease to be explored. Here, we describe major and minor steps to study polarity acquisition, using primary cultures of hippocampal neurons isolated from embryonic rat hippocampi, for in vitro monitoring. Furthermore, we use in utero electroporated, GFP-expressing embryonic mouse brains for visualizing cortical neuron migration and polarization in situ. Some underreported after-protocol steps are also included. For complete details on the use and execution of this protocol, please refer to Wilson et al. (2020).


Assuntos
Polaridade Celular/fisiologia , Neurônios/metabolismo , Cultura Primária de Células/métodos , Animais , Axônios/fisiologia , Células Cultivadas , Dendritos/fisiologia , Eletroporação , Hipocampo/metabolismo , Camundongos , Neurogênese , Neurônios/fisiologia , Ratos
8.
Cell Rep ; 31(6): 107639, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402271

RESUMO

The generation of axonal and dendritic domains is critical for brain circuitry assembly and physiology. Negative players, such as the RhoA-Rho coiled-coil-associated protein kinase (ROCK) signaling pathway, restrain axon development and polarization. Surprisingly, the genetic control of neuronal polarity has remained largely unexplored. Here, we report that, in primary cultured neurons, expression of the histone methyltransferase G9a and nuclear translocation of its major splicing isoform (G9a/E10+) peak at the time of axon formation. RNAi suppression of G9a/E10+ or pharmacological blockade of G9a constrains neuronal migration, axon initiation, and the establishment of neuronal polarity in situ and in vitro. Inhibition of G9a function upregulates RhoA-ROCK activity by increasing the expression of Lfc, a guanine nucleotide exchange factor (GEF) for RhoA. Together, these results identify G9a as a player in neuronal polarization.


Assuntos
Axônios/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Axônios/enzimologia , Movimento Celular/fisiologia , Células Cultivadas , Epigênese Genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
9.
J Cell Biol ; 217(8): 2777-2798, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980625

RESUMO

Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with ß1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with ß1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Fibronectinas/fisiologia , Lisossomos/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Integrina beta1/metabolismo , Células MCF-7 , Modelos Biológicos , Transporte Proteico , Proteólise , Microambiente Tumoral
10.
J Neurochem ; 146(5): 570-584, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29972689

RESUMO

Rotenone, a broad-spectrum insecticide, piscicide and pesticide, produces a complete and selective suppression of axonogenesis in cultured hippocampal neurons. This effect is associated with an inhibition of actin dynamics through activation of Ras homology member A (RhoA) activity. However, the upstream signaling mechanisms involved in rotenone-induced RhoA activation were unknown. We hypothesized that rotenone might inhibit axon growth by the activation of RhoA/ROCK pathway because of the changes in microtubule (MT) dynamics and the concomitant release of Lfc, a MT-associated Guanine Nucleotide Exchange Factor (GEF) for RhoA. In this study, we demonstrate that rotenone decreases MT stability in morphologically unpolarized neurons. Taxol (3 nM), a drug that stabilizes MT, attenuates the inhibitory effect of rotenone (0.1 µM) on axon formation. Radiometric Forster Resonance Energy Transfer, revealed that this effect is associated with inhibition of rotenone-induced RhoA and ROCK activation. Interestingly, silencing of Lfc, but not of the RhoA GEF ArhGEF1, prevents the inhibitory effect of rotenone on axon formation. Our results suggest that rotenone-induced MT de-stabilization releases Lfc from MT thereby promoting RhoA and ROCK activities and the consequent inhibition of axon growth. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inseticidas/uso terapêutico , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Rotenona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/citologia , Fosforilação/efeitos dos fármacos , Gravidez , Ratos , Transdução Genética , Tubulina (Proteína)/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas tau/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-29875650

RESUMO

Neurons are the most asymmetric cell types, with their axons commonly extending over lengths that are thousand times longer than the diameter of the cell soma. Fluorescence nanoscopy has recently unveiled that actin, spectrin and accompanying proteins form a membrane-associated periodic skeleton (MPS) that is ubiquitously present in mature axons from all neuronal types evaluated so far. The MPS is a regular supramolecular protein structure consisting of actin "rings" separated by spectrin tetramer "spacers". Although the MPS is best organized in axons, it is also present in dendrites, dendritic spine necks and thin cellular extensions of non-neuronal cells such as oligodendrocytes and microglia. The unique organization of the actin/spectrin skeleton has raised the hypothesis that it might serve to support the extreme physical and structural conditions that axons must resist during the lifespan of an organism. Another plausible function of the MPS consists of membrane compartmentalization and subsequent organization of protein domains. This review focuses on what we know so far about the structure of the MPS in different neuronal subdomains, its dynamics and the emerging evidence of its impact in axonal biology.

12.
13.
Sci Rep ; 8(1): 3007, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445221

RESUMO

Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.


Assuntos
Actinas/metabolismo , Axônios/patologia , Membrana Celular/metabolismo , Cones de Crescimento/patologia , Plasticidade Neuronal , Degeneração Retrógrada , Espectrina/metabolismo , Citoesqueleto de Actina , Animais , Axônios/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Ratos , Ratos Wistar
14.
Dev Neurobiol ; 78(3): 170-180, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29090510

RESUMO

Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.


Assuntos
Axônios/metabolismo , Membrana Celular/metabolismo , Animais , Crescimento Celular , Transdução de Sinais
15.
J Neurosci Methods ; 297: 22-30, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287744

RESUMO

BACKGROUND: While spherical treadmills are widely used in mouse models, there are only a few experimental setups suitable for adult rats, and none of them include head-fixation. NEW METHOD: We introduce a novel spherical treadmill apparatus for head-fixed rats that allows a wide repertory of natural responses. The rat is secured to a frame and placed on a freely rotating sphere. While being head-fixed, it can walk in any direction and perform different motor tasks. COMPARISON WITH EXISTING METHODS: Instead of being air-lifted, which is acceptable for light animals, the treadmill is sustained by three spherical bearings ensuring a smooth rotation in any direction. Movement detection is accomplished using a video camera that registers a dot pattern plotted on the sphere. RESULTS: Long Evans rats were trained to perform an auditory discrimination task in a Go/No-Go (walking/not-walking) paradigm. Animals were able to successfully discriminate between a 1 kHz and a 8 kHz auditory stimulus and execute the correct response, reaching the learning criterion (80% of correct responses) in approximately 20 training sessions. CONCLUSIONS: Our system broadens the possibilities of head-fixation experiments in adult rats making them compatible with spatial navigation on a spherical treadmill.


Assuntos
Equipamentos e Provisões , Aprendizagem , Modelos Animais , Ratos , Animais , Percepção Auditiva , Discriminação Psicológica , Desenho de Equipamento , Alimentos , Cabeça , Movimentos da Cabeça , Masculino , Atividade Motora , Poliestirenos , Software , Estresse Psicológico , Gravação em Vídeo
16.
Sci Rep ; 7(1): 16029, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167561

RESUMO

Fluorescence nanoscopy imaging permits the observation of periodic supramolecular protein structures in their natural environment, as well as the unveiling of previously unknown protein periodic structures. Deciphering the biological functions of such protein nanostructures requires systematic and quantitative analysis of large number of images under different experimental conditions and specific stimuli. Here we present a method and an open source software for the automated quantification of protein periodic structures in super-resolved images. Its performance is demonstrated by analyzing the abundance and regularity of the spectrin membrane-associated periodic skeleton (MPS) in hippocampal neurons of 2 to 40 days in vitro, imaged by STED and STORM nanoscopy. The automated analysis reveals that both the abundance and the regularity of the MPS increase over time and reach maximum plateau values after 14 DIV. A detailed analysis of the distributions of correlation coefficients provides indication of dynamical assembly and disassembly of the MPS.


Assuntos
Membrana Celular/metabolismo , Hipocampo/metabolismo , Microscopia de Fluorescência/métodos , Espectrina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Camundongos , Neurônios/metabolismo
17.
J Neurochem ; 143(1): 11-29, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28677143

RESUMO

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell-surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over-expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition. Read the Editorial Highlight for this article on page 9. Cover Image for this issue: doi. 10.1111/jnc.13817.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Moléculas de Adesão Celular/fisiologia , Neurogênese/fisiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Moléculas de Adesão Celular/química , Movimento Celular/fisiologia , Síndrome de Down/metabolismo , Humanos , Neurônios/fisiologia
18.
Methods Mol Biol ; 1496: 31-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631999

RESUMO

Here we describe the use of confocal microscopy in combination with antibodies specific to Golgi proteins to visualize dendritic Golgi outposts (GOPs) in cultured hippocampal pyramidal neurons. We also describe the use of spinning disk confocal microscopy, in combination with ectopically expressed glycosyltransferases fused to GFP variants, to visualize GOPs in living neurons.


Assuntos
Anticorpos/química , Complexo de Golgi/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Animais , Humanos , Microscopia Confocal/métodos
20.
Exp Neurol ; 278: 42-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26804001

RESUMO

Several reports have linked the presence of high titers of anti-Gg Abs with delayed recovery/poor prognosis in GBS. In most cases, failure to recover is associated with halted/deficient axon regeneration. Previous work identified that monoclonal and patient-derived anti-Gg Abs can act as inhibitory factors in an animal model of axon regeneration. Further studies using primary dorsal root ganglion neuron (DRGn) cultures demonstrated that anti-Gg Abs can inhibit neurite outgrowth by targeting gangliosides via activation of the small GTPase RhoA and its associated kinase (ROCK), a signaling pathway common to other established inhibitors of axon regeneration. We aimed to study the molecular basis of the inhibitory effect of anti-Gg abs on neurite outgrowth by dissecting the molecular dynamics of growth cones (GC) cytoskeleton in relation to the spatial-temporal analysis of RhoA activity. We now report that axon growth inhibition in DRGn induced by a well characterized mAb targeting gangliosides GD1a/GT1b involves: i) an early RhoA/ROCK-independent collapse of lamellipodia; ii) a RhoA/ROCK-dependent shrinking of filopodia; and iii) alteration of GC microtubule organization/and presumably dynamics via RhoA/ROCK-dependent phosphorylation of CRMP-2 at threonine 555. Our results also show that mAb 1B7 inhibits peripheral axon regeneration in an animal model via phosphorylation/inactivation of CRMP-2 at threonine 555. Overall, our data may help to explain the molecular mechanisms underlying impaired nerve repair in GBS. Future work should define RhoA-independent pathway/s and effectors regulating actin cytoskeleton, thus providing an opportunity for the design of a successful therapy to guarantee an efficient target reinnervation.


Assuntos
Anticorpos/farmacologia , Microtúbulos/patologia , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Polissacarídeos/imunologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Microtúbulos/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA