Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Eur J Pharm Biopharm ; 193: 241-253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972906

RESUMO

Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.


Assuntos
Nanofibras , Neoplasias , Humanos , Preparações Farmacêuticas , Polímeros , Poliésteres
3.
BMC Bioinformatics ; 24(1): 107, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949402

RESUMO

BACKGROUND: The molecular dynamics is an approach to obtain kinetic and thermodynamic characteristics of biomolecular structures. The molecular dynamics simulation softwares are very useful, however, most of them are used in command line form and continue with the same common implementation difficulties that plague researchers who are not computer specialists. RESULTS: Here, we have developed the VisualDynamics-a WEB tool developed to automate biological simulations performed in Gromacs using a graphical interface to make molecular dynamics simulation user-friendly task. In this new application the researcher can submit a simulation of the protein in the free form or complexed with a ligand. Can also download the graphics analysis and log files at the end of the simulation. CONCLUSIONS: VisualDynamics is a tool that will accelerate implementations and learning in the area of molecular dynamics simulation. Freely available at https://visualdynamics.fiocruz.br/login , is supported by all major web browsers. VisualDynamics was developed with Flask, which is a Python-based free and open-source framework for web development. The code is freely available for download at GitHub https://github.com/LABIOQUIM/visualdynamics .


Assuntos
Simulação de Dinâmica Molecular , Software , Proteínas/química , Cinética , Navegador
4.
Bioorg Med Chem ; 69: 116910, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777271

RESUMO

Superparamagnetic iron nanoparticles (SPIONs) have become one of the most useful colloidal systems in nanomedicine. We report here the preparation of new hybrid core@shell systems based on SPION nanoparticles coated with a SiO2 shell (SPION@SiO2) and functionalized with carboxyl groups (SPION@SiO2-COOH). A series of new N-alkylamino- and N-alkylamido-terminated 1-phenyl- tetrahydroisoquinolines (THIQs) and 3-tetrahydrobenzazepines (THBs) derivatives presenting -SMe and -Cl groups, respectively, with potential dopaminergic activity, are synthesized and incorporated to the hybrid system. We include the synthetic details for THIQs and THBs derivatives preparation and investigate the influence of the terminal-functional group as well as the number of carbon atoms linked to THIQ and THB molecules during the coupling to the SPION@SiO2-COOH. Nuclear magnetic resonance (NMR) and electron ionization mass spectrometry (EI-MS) are used to characterize the synthesized THIQs and THBs. High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy dispersive X-ray transmission electron microscopy (EDX-TEM), and proton high-resolution magic angle spinning NMR spectroscopy1H HRMAS-NMR) are used to confirm the presence of THB and THIQ molecules onto the surface of the nanoparticles. The hybrid SPION@SiO2-THIQ and THB systems show significant activity toward the D2 receptor, reaching Ki values of about 20 nM, thus having potential application in the treatment of central nervous system (CNS) diseases.


Assuntos
Compostos Férricos , Nanopartículas , Benzazepinas/farmacologia , Isoquinolinas/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Dióxido de Silício/química
5.
Agora USB ; 22(1): 486-508, ene.-jun. 2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1420009

RESUMO

Resumen El artículo se encarga de mostrar que los trabajos experimentales que tienen por objeto examinar principios de justicia distributiva en niños pueden ser leídos desde su relación con la variable demográfica género. Al efectuar esta lectura crítica desde una revisión temática se hace posible observar que los estudios, en términos generales, muestran hallazgos en tres direcciones: inexistencia de diferencias de género; diferencias no significativas y diferencias significativas. Estos resultados, sin embargo, se hallan directamente relacionados tanto con las edades de los participantes como con especificidades metodológicas de la experimentación. Con el objeto de dar cuenta de estos aspectos, el texto se ha dividido en tres partes: estudios de primera persona, trabajos de tercera persona y comparaciones culturales.


Abstract The article shows that experimental studies that aim to examine principles of distributive justice in children can be read from their relationship with the demographic variable gender. By making this critical reading from a thematic review, it is possible to observe that the studies, in general terms, show findings in three directions: no gender differences; non-significant differences; and significant differences. These results, however, are directly related both to participants' age and methodological specificities of the experimentation. In order to account for these aspects, the text is divided into three parts: first-person studies, third-person work, and cultural comparisons.

6.
ChemistryOpen ; 11(3): e202200007, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324086

RESUMO

Modification of gold substrates with a stable, uniform and ultrathin layer of biocompatible materials is of tremendous interest for the development of bio-devices. We present the fabrication of hybrid systems consisting of triangular prism gold nanoparticles (Au@NTPs) covalently covered with tripod-shaped oligo(p-phenylenes) featuring trifluoromethyl groups. Their synthesis is accomplished using a biphenyl boronic ester as the key compound. Au@NTPs were prepared through a seedless procedure using 3-butenoic acid and benzyldimethyl ammonium chloride, and modified with aminothiol groups. Coverage of this amine-modified gold substrate with a self-assembled monolayer (SAM) of tripod-shaped molecules is carried out in ethanolic solution. The hybrid system avoids up to 70 % of protein corona formation, and allows unspecific attachment for bulky adsorbates, providing an optimal biosensing platform. Chemical composition and morphology are analyzed by transmission electron microscopy (TEM), UV-visible spectroscopy and field emission scanning electron microscopy (FESEM).


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Compostos de Sulfidrila/química
7.
Heliyon ; 8(2): e08978, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243096

RESUMO

The present work introduces a systematic decision making process which, based on Stochastic Multicriteria Acceptability Analysis - Matching, is aimed at supporting the selection of pedagogical strategies according to the theoretical paradigms provided by the Color Theory and the Learning Styles concept. This novel procedure is illustrated by an example which allowed comparison with the traditional decision mechanism. The results show that the innovation is valuable for case, since it allows a more tuned-to-reality solution that prioritizes relevant pedagogical strategies and discards insignificant ones. Another underlying advantage of this novel process as compared to the traditional one is the possibility it offers to develop a broader and more detailed analysis, since it provides both the set of pedagogical strategies for a course or group of students and a personalized analysis for each student, thus facilitating the teacher's work.

8.
Pharmaceutics ; 14(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35057109

RESUMO

Ag2S nanoparticles are near-infrared (NIR) probes providing emission in a specific spectral range (~1200 nm), and superparamagnetic iron oxide nanoparticles (SPION) are colloidal systems able to respond to an external magnetic field. A disadvantage of Ag2S NPs is the attenuated luminescent properties are reduced in aqueous media and human fluids. Concerning SPION, the main drawback is the generation of undesirable clusters that reduce particle stability. Here, we fabricate biocompatible hybrid nanosystems combining Ag2S NPs and SPION by the electrospraying technique for drug delivery purposes. These nanostructures are composed of poly(lactic-co-glycolic acid) (PLGA) as the polymeric matrix in connection with both Ag2S NPs and SPIONs. Initially, we fabricate a hybrid colloidal nanosystem composed of Ag2S NPs in connection with PLGA (PLGA@Ag2S) by three different routes, showing good photoluminescent (PL) properties with relatively high average decay times. Then, we incorporate SPIONs, obtaining a PLGA polymeric matrix containing both Ag2S NPs and SPION (PLGA@Ag2S@SPION). Interestingly, in this hybrid system, the location of Ag2S NPs and SPIONs depends on the synthesis route performed during electrospraying. After a detailed characterization, we demonstrate the encapsulation and release capabilities, obtaining the kinetic release using a model chemotherapeutic drug (maslinic acid). Finally, we perform in vitro cytotoxicity assays using drug-loaded hybrid systems against several tumor cell lines.

9.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833209

RESUMO

The treatment of skin wounds poses significant clinical challenges, including the risk of bacterial infection. In particular due to its antimicrobial and tissue regeneration abilities chitosan (a polymeric biomaterial obtained by the deacetylation of chitin) has received extensive attention for its effectiveness in promoting skin wound repair. On the other hand, due to their intrinsic characteristics, metal nanoparticles (e.g., silver (Ag), gold (Au) or iron oxide (Fe3O4)) have demonstrated therapeutic properties potentially useful in the field of skin care. Therefore, the combination of these two promising materials (chitosan plus metal oxide NPs) could permit the achievement of a promising nanohybrid with enhanced properties that could be applied in advanced skin treatment. In this work, we have optimized the synthesis protocol of chitosan/metal hybrid nanoparticles by means of a straightforward synthetic method, ionotropic gelation, which presents a wide set of advantages. The synthesized hybrid NPs have undergone to a full physicochemical characterization. After that, the in vitro antibacterial and tissue regenerative activities of the achieved hybrids have been assessed in comparison to their individual constituent. As result, we have demonstrated the synergistic antibacterial plus the tissue regeneration enhancement of these nanohybrids as a consequence of the fusion between chitosan and metallic nanoparticles, especially in the case of chitosan/Fe3O4 hybrid nanoparticles.

10.
Sci Rep ; 11(1): 11998, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099808

RESUMO

Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development.


Assuntos
COVID-19/genética , Mutação/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Brasil , Genoma Viral , Genômica , Humanos , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
11.
ACS Nano ; 14(11): 15227-15240, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33174725

RESUMO

We study the nonequilibrium diffusive release of electroneutral molecular cargo encapsulated inside hollow hydrogel nanoparticles. We propose a theoretical model that includes osmotic, steric, and short-range polymer-cargo attractions to determine the effective cargo-hydrogel interaction, ueff*, and the effective diffusion coefficient of the cargo inside the polymer network, Deff*. Using dynamical density functional theory (DDFT), we investigate the scaling of the characteristic release time, τ1/2, with the key parameters involved in the process, namely, ueff*, Deff*, and the swelling ratio. This effort represents a full study of the problem, covering a broad range of cargo sizes and providing predictions for repulsive and attractive polymer shells. Our calculations show that the release time through repulsive polymer networks scales with q2eßueff*/Deff* for ßueff* ≫ 1. In this case, the cargo molecules are excluded from the shell of the hydrogel. For attractive shells, the polymer retains the cargo molecules on its internal surface and its interior, and the release time grows exponentially with the attraction strength. The DDFT calculations are compared to an analytical model for the mean first passage time, which provides an excellent quantitative description of the kinetics for both repulsive and attractive shells without fitting parameters. Finally, we apply the method to reproduce experimental results on the release of paclitaxel from hollow poly(4-vinylpyridine) nanoparticles and find that the slow release of the drug can be explained in terms of the strong binding attraction between the drug and the polymer.

12.
J Mol Model ; 26(11): 297, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030705

RESUMO

In this study, we have investigated the enzyme shikimate 5-dehydrogenase from the causative agent of tuberculosis, Mycobacterium tuberculosis. We have employed a mixture of computational techniques, including molecular dynamics, hybrid quantum chemical/molecular mechanical potentials, relaxed surface scans, quantum chemical descriptors and free-energy simulations, to elucidate the enzyme's reaction pathway. Overall, we find a two-step mechanism, with a single transition state, that proceeds by an energetically uphill hydride transfer, followed by an energetically downhill proton transfer. Our mechanism and calculated free energy barrier for the reaction, 64.9 kJ mol- 1, are in good agreement with those predicted from experiment. An analysis of quantum chemical descriptors along the reaction pathway indicated a possibly important, yet currently unreported, role of the active site threonine residue, Thr65.


Assuntos
Oxirredutases do Álcool/metabolismo , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Teoria Quântica , Oxirredutases do Álcool/química , Biocatálise , Especificidade por Substrato
13.
Artif Cells Nanomed Biotechnol ; 48(1): 1022-1035, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32663040

RESUMO

Here, temperature-sensitive hybrid poly(N-isopropylacrylamide) (pNIPAM) nanosystems with magnetic response are synthesised and investigated for controlled release of 5-fluorouracil (5FU) and oxaliplatin (OXA). Initially, magnetic nanoparticles (@Fe3O4) are synthesised by co-precipitation approach and functionalised with acrylic acid (AA), 3-butenoic acid (3BA) or allylamine (AL) as comonomers. The thermo-responsive polymer is grown by free radical polymerisation using N-isopropylacrylamide (NIPAM) as monomer, N,N'-methylenbisacrylamide (BIS) as cross-linker, and 2,2'-azobis(2-methylpropionamidene) (V50) as initiator. We evaluate particle morphology by transmission electron microscopy (TEM) and particle size and surface charge by dynamic light scattering (DLS) and Z-potential (ZP) measurements. These magnetically active pNIPAM@ nanoformulations are loaded with 5-fluorouracil (5FU) and oxaliplatin (OXA) to determine loading efficiency, drug content and release as well as the cytotoxicity against T-84 colon cancer cells. Our results show high biocompatibility of pNIPAM nanoformulations using human blood cells and cultured cells. Interestingly, the pNIPAM@Fe3O4-3BA + 5FU nanoformulation significantly reduces the growth of T-84 cells (57% relative inhibition of proliferation). Indeed, pNIPAM-co-AL@Fe3O4-AA nanosystems produce a slight migration of HCT15 cells in suspension in the presence of an external magnetic field. Therefore, the obtained hybrid nanoparticles can be applied as a promising biocompatible nanoplatform for the delivery of 5FU and OXA in the improvement of colon cancer treatments.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Temperatura , Liberação Controlada de Fármacos , Fluoruracila/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula
14.
Comput Biol Chem ; 87: 107322, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32604028

RESUMO

Although molecular dynamics encompasses several applications, studies focusing on biomolecular systems are central issues of this research area. Such simulations require the generation of trajectory files, which provide a path for the analysis and interpretation of results with biological significance. However, although several programs have been developed in Python language for the analyses of molecular dynamics (MD) trajectories, they usually require some knowledge of programming languages in order to write or run the scripts using command lines, which certainly hinders the access of MD simulations to many scientists with the necessary biological background to interpret their results. To ease the access to Python packages focusing on MD trajectory analyses, we built a user-friendly and easy-to-install graphical PyMOL interface. Geo-Measures integrates the PyMOL functionalities with MDTraj, a powerful library of trajectory analyses, allowing the users to access up to 14 different types of analyses. Two sample cases are reported here to demonstrate the use of Geo-Measures. In the first example, which involves the use a MD trajectory file of hemoglobin from the MoDEL MD bank, we exemplified the analyses of the following variables: root mean square deviation, radius of gyration, free energy landscape and principal component analysis. In the second case, we built a trajectory file for the ecto-5'-nucleotidase using the LiGRO program to study the carbon alpha pincer angles, to define the secondary structure of the proteins and to analyze the Modevectors. This user-friendly graphical PyMOL plugin, which can be used to generate several descriptive analyses for protein structures, is open source and can be downloaded at: https://pymolwiki.org/index.php/Geo_Measures_Plugin.

15.
ACS Appl Mater Interfaces ; 12(11): 12500-12509, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32069007

RESUMO

Ag2S semiconductor nanoparticles (NPs) are near-infrared luminescent probes with outstanding properties (good biocompatibility, optimum spectral operation range, and easy biofunctionalization) that make them ideal probes for in vivo imaging. Ag2S NPs have, indeed, made possible amazing challenges including in vivo brain imaging and advanced diagnosis of the cardiovascular system. Despite the continuous redesign of synthesis routes, the emission quantum yield (QY) of Ag2S NPs is typically below 0.2%. This leads to a low luminescent brightness that avoids their translation into the clinics. In this work, an innovative synthetic methodology that permits a 10-fold increment in the absolute QY from 0.2 up to 2.3% is presented. Such an increment in the QY is accompanied by an enlargement of photoluminescence lifetimes from 184 to 1200 ns. The optimized synthetic route presented here is based on a fine control over both the Ag core and the Ag/S ratio within the NPs. Such control reduces the density of structural defects and decreases the nonradiative pathways. In addition, we demonstrate that the superior performance of the Ag2S NPs allows for high-contrast in vivo bioimaging.


Assuntos
Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Prata/química , Abdome/diagnóstico por imagem , Animais , Feminino , Corantes Fluorescentes/administração & dosagem , Membro Posterior/diagnóstico por imagem , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Nus , Pontos Quânticos/administração & dosagem , Prata/administração & dosagem , Espectroscopia de Luz Próxima ao Infravermelho
16.
ACS Appl Mater Interfaces ; 11(32): 29360-29372, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31329406

RESUMO

A novel wet-chemical protocol is reported for the synthesis of "temperature-programmable" catalytic colloids consisting of bimetallic core@shell AuAg nanoparticles encapsulated into poly(N-isopropylacrylamide) (pNIPAM) microgels with silver satellites (AgSTs) incorporated within the microgel structure. Spherical AuNPs of 50 nm in diameter are initially synthesized and used for growing a pNIPAM microgel shell with temperature stimulus response. A silver shell is subsequently grown on the Au core by diffusing Ag salt through the hydrophilic pNIPAM microgel (AuAg@pNIPAM microgel). The use of allylamine as a co-monomer during pNIPAM polymerization facilitates the coordination of Ag+ with the NH2 nitrogen lone pair of electrons, which are reduced to Ag seeds (∼14 nm) using a strong reducing agent, obtaining thus AuAg@pNIPAM@Ag hybrid microgels. The two systems are tested as catalysts toward the reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) by NaBH4. Both exhibit extremely sensitive temperature-dependent reaction rate constants, with the highest K1 value of the order of 0.6 L/m2 s, which is one of the highest values ever reported. The presence of plasmonic entities is confirmed by UV-vis spectroscopy. Dynamic light scattering proves the temperature responsiveness in all cases. Transmission electron microscopy and energy-dispersive X-ray (EDX) elemental mapping highlight the monodispersity of the synthesized hybrid nanostructured microgels, as well as their size and metallic composition. The amount of gold and silver in both systems is obtained by thermogravimetric analysis and the EDX spectrum. The reduction reaction kinetics is monitored by UV-vis spectroscopy at different temperatures for both catalytic systems, with the AuAg@pNIPAM@Ag microgels showing superior catalytic performance at all temperatures because of the synergistic effect of the AuAg core and the AgSTs. The principal novelty of this study lies in the "hierarchical" design of the metal-polymer-metal core@shell@satellite nanostructured colloids exhibiting synergistic capabilities of the plasmonic NPs for, among others, temperature-controlled catalytic applications.

17.
Nanomaterials (Basel) ; 9(4)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022935

RESUMO

Polymeric nanofibers (NFs) have been extensively reported as a biocompatible scaffold to be specifically applied in several researching fields, including biomedical applications. The principal researching lines cover the encapsulation of antitumor drugs for controlled drug delivery applications, scaffolds structures for tissue engineering and regenerative medicine, as well as magnetic or plasmonic hyperthermia to be applied in the reduction of cancer tumors. This makes NFs useful as therapeutic implantable patches or mats to be implemented in numerous biomedical researching fields. In this context, several biocompatible polymers with excellent biocompatibility and biodegradability including poly lactic-co-glycolic acid (PLGA), poly butylcyanoacrylate (PBCA), poly ethylenglycol (PEG), poly (ε-caprolactone) (PCL) or poly lactic acid (PLA) have been widely used for the synthesis of NFs using the electrospun technique. Indeed, other types of polymers with stimuli-responsive capabilities has have recently reported for the fabrication of polymeric NFs scaffolds with relevant biomedical applications. Importantly, colloidal nanoparticles used as nanocarriers and non-biodegradable structures have been also incorporated by electrospinning into polymeric NFs for drug delivery applications and cancer treatments. In this review, we focus on the incorporation of drugs into polymeric NFs for drug delivery and cancer treatment applications. However, the principal novelty compared with previously reported publications is that we also focus on recent investigations concerning new strategies that increase drug delivery and cancer treatments efficiencies, such as the incorporation of colloidal nanoparticles into polymeric NFs, the possibility to fabricate NFs with the capability to respond to external environments, and finally, the synthesis of hybrid polymeric NFs containing carbon nanotubes, magnetic and gold nanoparticles, with magnetic and plasmonic hyperthermia applicability.

18.
J Comput Chem ; 39(24): 2000-2011, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30238474

RESUMO

Prions are proteins that cause a group of invariably fatal neurodegenerative diseases, one of the most known being bovine spongiform encephalopathy. The three-dimensional structure of PrPSc , the altered isoform of the prion protein, has not been fully elucidated yet, and studies on prion conversion mechanisms must rely on hypothetical ß-rich structures. Experimental and computational studies indicate that the use of low pH is capable to produce a gain of ß-structure content in the otherwise unstructured N-terminal region. These in silico studies have used different PrP fragments from distinct organisms, and with different lengths and simulation protocols, making it difficult to identify the influence of the force fields on the formation of such structures. Here, we performed a systematic study of the influence of six well-established force fields (GROMOS96 53a6, GROMOS96 43a1, AMBER99SB, AMBER99SB-ILDN, CHARMM27, and OPLS-AA/L) on the process of structural conversion of the Syrian hamster cellular prion protein simulated at acidic and neutral pH. From our analysis, we observe a strong dependence of the results with the different force fields employed. Additionally, only GROMOS96 53A6 and AMBER99SB force fields are capable to capture a high ß-sheet formation at acidic pH and adequately reproduce the neutral pH. In both cases, the ß-sheet elongation seems to be guided by the movement of the N-terminal tail toward the N-terminal of α-helix HB under acidic condition. These results comprise the most wide-ranging study to date correlating force fields to structural changes in the cellular prion protein. © 2018 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Priônicas/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína
19.
ACS Appl Mater Interfaces ; 10(13): 11152-11163, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29498508

RESUMO

We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV-vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10-8-10-9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

20.
J Mol Graph Model ; 80: 251-263, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414044

RESUMO

The PI3K/Akt/mTOR pathway is an important intracellular signaling pathway in cell cycle regulation and its dysregulation is associated with various types of diseases. mTOR (mechanistic or mammalian target of rapamycin) is the main enzyme that performs intermediate control of the signaling pathway through a phosphotransfer process. The classical inhibition of the mTOR pathway is effected by rapamycin and its analogous blocking allosterically the catalytic phosphorylation site, avoiding the deleterious side effects induced by ATP-competitive inhibitors. We employed ligand-based drug design strategies such as pharmacophore searching and analysis, molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMETox) properties filtering, and molecular dynamics to select potential molecules to become non-ATP competitive inhibitors of the mTOR complex. According to our findings, we propose eight novel potential mTOR inhibitors with similar or better properties than the classic inhibitor complex, rapamycin.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Serina-Treonina Quinases TOR/química , Sítios de Ligação , Desenho de Fármacos , Humanos , Ligantes , Conformação Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA