Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(43): 24842-24851, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723311

RESUMO

Atomistic models provide a detailed representation of molecular systems, but are sometimes inadequate for simulations of large systems over long timescales. Coarse-grained models enable accelerated simulations by reducing the number of degrees of freedom, at the cost of reduced accuracy. New optimisation processes to parameterise these models could improve their quality and range of applicability. We present an automated approach for the optimisation of coarse-grained force fields, by reproducing free energy data derived from atomistic molecular simulations. To illustrate the approach, we implemented hydration free energy gradients as a new target for force field optimisation in ForceBalance and applied it successfully to optimise the un-charged side-chains and the protein backbone in the SIRAH protein coarse-grain force field. The optimised parameters closely reproduced hydration free energies of atomistic models and gave improved agreement with experiment.


Assuntos
Automação , Simulação de Dinâmica Molecular , Proteínas/química , Termodinâmica
2.
BMC Struct Biol ; 15: 11, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26112768

RESUMO

BACKGROUND: Helicobacter pylori is an important factor in the development of diseases such as ulcer and gastric cancer. This bacterium uses a periplasmic transporter, UreI, to deliver urea to the intracelullar space, where later it is transformed into ammonia by the cytoplasmic enzyme urease to survive the acidic condition of the human stomach. The UreI transporter presents a pH-dependent activity, where this pH-dependence remains unknown at a structural level. Althought the existance of several protonable residues in the periplasmic loops are related to the pH-dependent activity, we find interesting to have a clear view of the conformational changes involved in this phenomena through a molecular dynamic study. RESULTS: Molecular dynamic simulations of the UreI transporter at three different pH conditions were performed, revealing two main pH-dependent conformations, which we present as the open and close states. We find that salt bridges between the periplasmic loops are crucial interactions that stabilize these conformations. Besides, a cooperative behaviour exists between the six subunits of the system that is necessary to fulfill the activity of this transporter. CONCLUSIONS: We found different pH-dependent conformations of the urea transporter UreI from Helicobacter pylori, which are related to salt-bridge interactions in the periplasmic regions. The behaviour of every channel in the system is not independent, given the existance of a cooperative behaviour through the formation of salt-bridges between the subunits of the hexameric system. We believe that our results will be related to the generation of new eradication therapies using this transporter as an attractive target, denoting that the knowledge of the possible pH-dependent conformations adopted for this transporter are important for the development of rational drug design approximations.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/metabolismo , Proteínas de Membrana Transportadoras/química , Helicobacter pylori/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Periplasma/metabolismo , Conformação Proteica , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA