Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Host Microbe ; 32(2): 261-275.e4, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38307019

RESUMO

Hemagglutinins (HAs) from human influenza viruses descend from avian progenitors that bind α2-3-linked sialosides and must adapt to glycans with α2-6-linked sialic acids on human airway cells to transmit within the human population. Since their introduction during the 1968 pandemic, H3N2 viruses have evolved over the past five decades to preferentially recognize human α2-6-sialoside receptors that are elongated through addition of poly-LacNAc. We show that more recent H3N2 viruses now make increasingly complex interactions with elongated receptors while continuously selecting for strains maintaining this phenotype. This change in receptor engagement is accompanied by an extension of the traditional receptor-binding site to include residues in key antigenic sites on the surface of HA trimers. These results help explain the propensity for selection of antigenic variants, leading to vaccine mismatching, when H3N2 viruses are propagated in chicken eggs or cells that do not contain such receptors.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Animais , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Receptores Virais/química , Ácidos Siálicos/metabolismo , Polissacarídeos/metabolismo , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza
2.
J Org Chem ; 85(24): 16072-16081, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33258593

RESUMO

Molecular recognition of carbohydrates is a key step in essential biological processes. Carbohydrate receptors can distinguish monosaccharides even if they only differ in a single aspect of the orientation of the hydroxyl groups or harbor subtle chemical modifications. Hydroxyl-by-fluorine substitution has proven its merits for chemically mapping the importance of hydroxyl groups in carbohydrate-receptor interactions. 19F NMR spectroscopy could thus be adapted to allow contact mapping together with screening in compound mixtures. Using a library of fluorinated glucose (Glc), mannose (Man), and galactose (Gal) derived by systematically exchanging every hydroxyl group by a fluorine atom, we developed a strategy combining chemical mapping and 19F NMR T2 filtering-based screening. By testing this strategy on the proof-of-principle level with a library of 13 fluorinated monosaccharides to a set of three carbohydrate receptors of diverse origin, i.e. the human macrophage galactose-type lectin, a plant lectin, Pisum sativum agglutinin, and the bacterial Gal-/Glc-binding protein from Escherichia coli, it became possible to simultaneously define their monosaccharide selectivity and identify the essential hydroxyls for interaction.

3.
J Am Chem Soc ; 142(28): 12501-12514, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32579343

RESUMO

Glycosylations promoted by triflate-generating reagents are widespread synthetic methods for the construction of glycosidic scaffolds and glycoconjugates of biological and chemical interest. These processes are thought to proceed with the participation of a plethora of activated high energy intermediates such as the α- and ß-glycosyl triflates, or even increasingly unstable glycosyl oxocarbenium-like species, among which only α-glycosyl triflates have been well characterized under representative reaction conditions. Interestingly, the remaining less accessible intermediates, yet to be experimentally described, seem to be particularly relevant in α-selective processes, involving weak acceptors. Herein, we report a detailed analysis of several paradigmatic and illustrative examples of such reactions, employing a combination of chemical, NMR, kinetic and theoretical approaches, culminating in the unprecedented detection and quantification of the true ß-glycosyl triflate intermediates within activated donor mixtures. This achievement was further employed as a stepping-stone for the characterization of the triflate anomerization dynamics, which along with the acceptor substitutions, govern the stereochemical outcome of the reaction. The obtained data conclusively show that, even for highly dissociative reactions involving ß-close ion pair (ß-CIP) species, the formation of the α-glycoside is necessarily preceded by a bimolecular α → ß triflate interconversion, which under certain circumstances becomes the rate-limiting step. Overall, our results rule out the prevalence of the Curtin-Hammett fast-exchange assumption for most glycosylations and highlight the distinct reactivity properties of α- and ß-glycosyl triflates against neutral and anionic acceptors.


Assuntos
Glicosídeos/síntese química , Configuração de Carboidratos , Glicosídeos/química , Glicosilação , Cinética , Teoria Quântica , Estereoisomerismo
4.
Chemistry ; 25(11): 2708-2712, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566756

RESUMO

To investigate how ligninolytic peroxidases acquired the uniquely high redox potential they show today, their ancestors were resurrected and characterized. Unfortunately, the transient Compounds I (CI) and II (CII) from peroxide activation of the enzyme resting state (RS) are unstable. Therefore, the reduction potentials (E°') of the three redox couples (CI/RS, CI/CII and CII/RS) were estimated (for the first time in a ligninolytic peroxidase) from equilibrium concentrations analyzed by stopped-flow UV/Vis spectroscopy. Interestingly, the E°' of rate-limiting CII reduction to RS increased 70 mV from the common peroxidase ancestor to extant lignin peroxidase (LiP), and the same boost was observed for CI/RS and CI/CII, albeit with higher E°' values. A straightforward correlation was found between the E°' value and the progressive displacement of the proximal histidine Hϵ1 chemical shift in the NMR spectra, due to the higher paramagnetic effect of the heme Fe3+ . More interestingly, the E°' and NMR data also correlated with the evolutionary time, revealing that ancestral peroxidases increased their reduction potential in the evolution to LiP thanks to molecular rearrangements in their heme pocket during the last 400 million years.


Assuntos
Proteínas Fúngicas/química , Lignina/química , Peroxidases , Lignina/metabolismo , Peroxidases/química , Peroxidases/metabolismo
5.
World J Microbiol Biotechnol ; 30(3): 989-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24122101

RESUMO

Thermoresistant, recombinant ß-galactosidase from Thermotoga maritima was purified and immobilized on the surface of epoxy-coated magnetic beads. The enzyme, which has hexameric quaternary structure as shown by gel filtration chromatography, attaches to the resin through multiple covalent linkages that involve different subunits. The bound enzyme shows higher stability than the free form. The immobilized enzyme showed to be efficient for the hydrolysis of lactose and the biosynthesis of galactooligosaccharides (GOS). The chemical structure of synthesized GOS has been determined by NMR revealing that the main product was ß-3'-galactosyl lactose. Although ß-galactosidases from different sources have been used for the same purposes, the distinct advantage of the methodology described in this communication is that the enzyme can be easily produced, purified and immobilized in large quantities.


Assuntos
Enzimas Imobilizadas/metabolismo , Lactose/metabolismo , Oligossacarídeos/biossíntese , beta-Galactosidase/metabolismo , Cromatografia em Gel , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Hidrólise , Espectroscopia de Ressonância Magnética , Multimerização Proteica , Subunidades Proteicas/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermotoga maritima/enzimologia , Thermotoga maritima/genética , beta-Galactosidase/química , beta-Galactosidase/genética
6.
Bioorg Med Chem ; 15(14): 4836-40, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17512743

RESUMO

Disaccharides 2-O-, 3-O-, and 4-O-beta-D-galactopyranosyl-D-xyloses (2, 3, and 1, respectively) were obtained by beta-galactosidase-catalyzed reactions for their use in the evaluation of intestinal lactase activity in vivo. Their administration to suckling rats followed by determination of the derived D-xylose in the urine and measurement of lactase activity in intestinal homogenates showed 1 to be the most suitable disaccharide for a potential test of the deficiency of intestinal lactase. The synthesis of 1 was further studied by evaluating the effect of different variables on the yield and regioselectivity of the enzymatic galactosylation, and the purification process was optimized.


Assuntos
Dissacarídeos/química , Dissacarídeos/metabolismo , Galactose/química , Galactose/metabolismo , Lactase/metabolismo , Xilose/análogos & derivados , Xilose/metabolismo , Envelhecimento/fisiologia , Animais , Dissacarídeos/farmacologia , Galactosidases/metabolismo , Isomerismo , Estrutura Molecular , Ratos , Soluções , Xilose/biossíntese , Xilose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA