Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
iScience ; 26(8): 107361, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554445

RESUMO

Individuals with Down syndrome (DS) clinically manifest severe respiratory illnesses; however, there is a paucity of data on how DS influences homeostatic physiology of lung airway, and its reactive responses to pulmonary pathogens. We generated well-differentiated ciliated airway epithelia using tracheas from wild-type and Dp(16)1/Yey mice in vitro, and discovered that Dp(16)1/Yey epithelia have significantly lower abundance of ciliated cells, an altered ciliary beating profile, and reduced mucociliary transport. Interestingly, both sets of differentiated epithelia released similar quantities of viral particles after infection with influenza A virus (IAV). However, RNA-sequencing and proteomic analyses revealed an immune hyperreactive phenotype particularly for monocyte-recruiting chemokines in Dp(16)1/Yey epithelia. Importantly, when we challenged mice in vivo with IAV, we observed immune hyper-responsiveness in Dp(16)1/Yey mice, evidenced by higher quantities of lung airway infiltrated monocytes, and elevated levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid. Our findings illuminate mechanisms underlying DS-mediated pathophysiological changes in airway epithelium.

2.
Antimicrob Agents Chemother ; 67(4): e0170322, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975844

RESUMO

Antiviral compounds targeting cellular metabolism are part of the therapeutic arsenal to control the spread of virus infection, either as sole treatment or in combination with direct-acting antivirals (DAA) or vaccines. Here, we describe the effect of two of them, lauryl gallate (LG) and valproic acid (VPA) both exhibiting a wide antiviral spectrum, against infection by coronaviruses such as HCoV-229E, HCoV-OC43, and SARS-CoV-2. A consistent 2 to 4-log-decrease in virus yields was observed in the presence of each antiviral, with an average IC50 value of 1.6 µM for LG and 7.2 mM for VPA. Similar levels of inhibition were observed when adding the drug 1 h before adsorption, at the time of infection or 2 h after infection, supporting a postvirus entry mechanism of action. The specificity of the antiviral effect of LG against SARS-CoV-2, relative to other related compounds such as gallic acid (G) and epicatechin gallate (ECG), predicted to be better inhibitors according to in silico studies, was also demonstrated. The combined addition of LG, VPA, and remdesivir (RDV), a DAA with a proven effect against human coronaviruses, resulted in a robust synergistic effect between LG and VPA, and to a lesser extent between the other drug combinations. These findings reinforce the interest of these wide antiviral spectrum host-targeted compounds as a first line of defense against viral diseases or as a vaccine complement to minimize the gap in antibody-mediated protection evoked by vaccines, either in the case of SARS-CoV-2 or for other possible emerging viruses.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Hepatite C Crônica , Humanos , Antivirais/farmacologia , SARS-CoV-2
3.
Sci Rep ; 11(1): 23494, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873184

RESUMO

Foot-and-mouth disease virus (FMDV) is a picornavirus that exhibits an extremely acid sensitive capsid. This acid lability is directly related to its mechanism of uncoating triggered by acidification inside cellular endosomes. Using a collection of FMDV mutants we have systematically analyzed the relationship between acid stability and the requirement for acidic endosomes using ammonium chloride (NH4Cl), an inhibitor of endosome acidification. A FMDV mutant carrying two substitutions with opposite effects on acid-stability (VP3 A116V that reduces acid stability, and VP1 N17D that increases acid stability) displayed a rapid shift towards acid lability that resulted in increased resistance to NH4Cl as well as to concanamicyn A, a different lysosomotropic agent. This resistance could be explained by a higher ability of the mutant populations to produce NH4Cl-resistant variants, as supported by their tendency to accumulate mutations related to NH4Cl-resistance that was higher than that of the WT populations. Competition experiments also indicated that the combination of both amino acid substitutions promoted an increase of viral fitness that likely contributed to NH4Cl resistance. This study provides novel evidences supporting that the combination of mutations in a viral capsid can result in compensatory effects that lead to fitness gain, and facilitate space to an inhibitor of acid-dependent uncoating. Thus, although drug-resistant variants usually exhibit a reduction in viral fitness, our results indicate that compensatory mutations that restore this reduction in fitness can promote emergence of resistance mutants.


Assuntos
Substituição de Aminoácidos/genética , Proteínas do Capsídeo/genética , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Animais , Linhagem Celular , Cricetinae , Endossomos/genética , Mutação/genética
4.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443302

RESUMO

An approach based on a dendrimer display of B- and T-cell epitopes relevant for antibody induction has been shown to be effective as a foot-and-mouth disease (FMD) vaccine. B2T dendrimers combining two copies of the major FMD virus (FMDV) type O B-cell epitope (capsid proteinVP1 (140-158)) covalently linked to a heterotypic T-cell epitope from non-structural protein 3A (21-35), henceforth B2T-3A, has previously been shown to elicit high neutralizing antibody (nAb) titers and IFN-γ-producing cells in both mice and pigs. Here, we provide evidence that the B- and T-cell epitopes need to be tethered to a single molecular platform for successful T-cell help, leading to efficient nAb induction in mice. In addition, mice immunized with a non-covalent mixture of B2T-3A dendrimers containing the B-cell epitopes of FMDV types O and C induced similarly high nAb levels against both serotypes, opening the way for a multivalent vaccine platform against a variety of serologically different FMDVs. These findings are relevant for the design of vaccine strategies based on B- and T-cell epitope combinations.


Assuntos
Dendrímeros/química , Epitopos de Linfócito T/imunologia , Vírus da Febre Aftosa/imunologia , Peptídeos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Camundongos , Especificidade da Espécie , Suínos
5.
Vaccines (Basel) ; 9(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066901

RESUMO

Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.

6.
Vaccines (Basel) ; 8(3)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911818

RESUMO

Dendrimer peptides are promising vaccine candidates against the foot-and-mouth disease virus (FMDV). Several B-cell epitope (B2T) dendrimers, harboring a major FMDV antigenic B-cell site in VP1 protein, are covalently linked to heterotypic T-cell epitopes from 3A and/or 3D proteins, and elicited consistent levels of neutralizing antibodies and IFN-γ-producing cells in pigs. To address the contribution of the highly polymorphic nature of the porcine MHC (SLA, swine leukocyte antigen) on the immunogenicity of B2T dendrimers, low-resolution (Lr) haplotyping was performed. We looked for possible correlations between particular Lr haplotypes with neutralizing antibody and T-cell responses induced by B2T peptides. In this study, 63 pigs immunized with B2T dendrimers and 10 non-immunized (control) animals are analyzed. The results reveal a robust significant correlation between SLA class-II Lr haplotypes and the T-cell response. Similar correlations of T-cell response with SLA class-I Lr haplotypes, and between B-cell antibody response and SLA class-I and SLA class-II Lr haplotypes, were only found when the sample was reduced to animals with Lr haplotypes represented more than once. These results support the contribution of SLA class-II restricted T-cells to the magnitude of the T-cell response and to the antibody response evoked by the B2T dendrimers, being of potential value for peptide vaccine design against FMDV.

7.
Front Vet Sci ; 7: 498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851051

RESUMO

Synthetic dendrimer peptides are a promising strategy to develop new FMD vaccines. A dendrimer peptide, termed B2T-3A, which harbors two copies of the major FMDV antigenic B-cell site [VP1 (140-158)], covalently linked to a heterotypic T-cell from the non-structural protein 3A [3A (21-35)], has been shown to protect pigs against viral challenge. Interestingly, the modular design of this dendrimer peptide allows modifications aimed at improving its immunogenicity, such as the replacement of the T-cell epitope moiety. Here, we report that a dendrimer peptide, B2T-3D, harboring a T-cell epitope from FMDV 3D protein [3D (56-70)], when inoculated in pigs, elicited consistent levels of neutralizing antibodies and high frequencies of IFN-γ-producing cells upon in vitro recall with the homologous dendrimers, both responses being similar to those evoked by B2T-3A. Lymphocytes from B2T-3A-immunized pigs were in vitro-stimulated by T-3A peptide and to a lesser extent by B-peptide, while those from B2T-3D- immunized animals preferentially recognized the T-3D peptide, suggesting that this epitope is a potent inducer of IFN-γ producing-cells. These results extend the repertoire of T-cell epitopes efficiently recognized by swine lymphocytes and open the possibility of using T-3D to enhance the immunogenicity and the protection conferred by B2T-dendrimers.

8.
Vaccines (Basel) ; 8(3)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707834

RESUMO

A broadly protective and biosafe vaccine against foot-and-mouth disease virus (FMDV) remains an unmet need in the animal health sector. We have previously reported solid protection against serotype O FMDV afforded by dendrimeric peptide structures harboring virus-specific B- and T-cell epitopes, and also shown such type of multivalent presentations to be advantageous over simple B-T-epitope linear juxtaposition. Chemically, our vaccine platforms are modular constructions readily made from specified B- and T-cell epitope precursor peptides that are conjugated in solution. With the aim of developing an improved version of our formulations to be used for on-demand vaccine applications, we evaluate in this study a novel design for epitope presentation to the immune system based on a multiple antigen peptide (MAP) containing six immunologically relevant motifs arranged in dendrimeric fashion (named B2T-TB2). Interestingly, two B2T units fused tail-to-tail into a single homodimer platform elicited higher B- and T-cell specific responses than former candidates, with immunization scores remaining stable even after 4 months. Moreover, this macromolecular assembly shows consistent immune response in swine, the natural FMDV host, at reduced dose. Thus, our versatile, immunogenic prototype can find application in the development of peptide-based vaccine candidates for various therapeutic uses using safer and more efficacious vaccination regimens.

9.
Sci Rep ; 10(1): 1657, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015411

RESUMO

Elucidation of the molecular basis of the stability of foot-and-mouth disease virus (FMDV) particles is relevant to understand key aspects of the virus cycle. Residue N17D in VP1, located at the capsid inner surface, modulates the resistance of FMDV virion to dissociation and inactivation at acidic pH. Here we have studied whether the virion-stabilizing effect of amino acid substitution VP1 N17D may be mediated by the alteration of electrostatic charge at this position and/or the presence of the viral RNA. Substitutions that either introduced a positive charge (R,K) or preserved neutrality (A) at position VP1 17 led to increased sensitivity of virions to inactivation at acidic pH, while replacement by negatively charged residues (D,E) increased the resistance of virions to acidic pH. The role in virion stability of viral RNA was addressed using FMDV empty capsids that have a virtually unchanged structure compared to the capsid in the RNA-filled virion, but that are considerably more resistant to acidic pH than WT virions, supporting a virion-destabilizing effect of the RNA. Remarkably, no differences were observed in the resistance to dissociation at acidic pH between the WT empty capsids and those harboring replacement N17D. Thus, the virion-destabilizing effect of viral RNA at acidic pH can be partially restored by introducing negatively charged residues at position VP1 N17.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Febre Aftosa/química , RNA Viral/química , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Febre Aftosa/genética , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Estabilidade de RNA , Eletricidade Estática , Vírion/química , Vírion/genética
10.
Transbound Emerg Dis ; 67(4): 1614-1622, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31994334

RESUMO

Foot-and-mouth disease virus (FMDV) causes a widely extended contagious disease of livestock. We have previously reported that a synthetic dendrimeric peptide, termed B2 T(mal), consisting of two copies of a B-cell epitope [VP1(140-158)] linked through maleimide groups to a T-cell epitope [3A(21-35)] of FMDV, elicits potent B- and T-cell-specific responses and confers solid protection in pigs to type O FMDV challenge. Longer duration of the protective response and the possibility of inducing protection after a single dose are important requirements for an efficient FMD vaccine. Herein, we show that administration of two doses of B2 T(mal) elicited high levels of specific total IgGs and neutralizing antibodies that lasted 4-5 months after the peptide boost. Additionally, concomitant levels of IFN-γ-producing specific T cells were observed. Immunization with two doses of B2 T(mal) conferred a long-lasting reduced susceptibility to FMDV infection, up to 136 days (19/20 weeks) post-boost. Remarkably, a similar duration of the protective response was achieved by a single dose of B2 T(mal). The effect on the B2 T(mal) vaccine of RNA transcripts derived from non-coding regions in the FMDV genome, known to enhance the immune response and protection induced by a conventional inactivated vaccine, was also analysed. The contribution of our results to the development of FMD dendrimeric vaccines is discussed.


Assuntos
Epitopos de Linfócito B/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Peptídeos/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Dendrímeros , Epitopos de Linfócito T/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Imunidade , Testes de Neutralização , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Linfócitos T/imunologia , Vacinas Virais/imunologia
11.
Vaccines (Basel) ; 8(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936706

RESUMO

Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals whose control relies on efficient vaccination. We have reported that dendrimer peptide B2T, with two copies of FMDV B-cell epitope VP1 (136-154) linked through maleimide units to T-cell epitope 3A (21-35)], elicits potent B- and T-cell specific responses and confers solid protection in pigs to type-O FMDV challenge after two doses of peptide. Herein we now show that B2T evokes specific protective immune responses after administration of a single dose of either 2 or 0.5 mg of peptide. High titers of ELISA and neutralizing antibodies against FMDV were detectable at day 15 post-immunization. Likewise, activated T cells and induced IFN-γ response to in vitro recall with FMDV peptides were also detected by the same day. Further, in 70% of B2T-vaccinated pigs, full protection-no clinical signs of disease-was observed upon virus challenge at day 25 post-immunization. These results strengthen the potential of B2T as a safe, cost-effective candidate vaccine conferring adequate protection against FMDV with a single dose. The finding is particularly relevant to emergency scenarios permitting only a single shot immunization.

12.
Front Immunol ; 11: 621537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613553

RESUMO

Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140-158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21-35)] or 3D [3D (56-70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3-) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dendrímeros/farmacologia , Epitopos de Linfócito B , Epitopos de Linfócito T , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Peptídeos , Doenças dos Suínos/imunologia , Animais , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/farmacologia , Epitopos de Linfócito T/farmacologia , Feminino , Febre Aftosa/prevenção & controle , Peptídeos/imunologia , Peptídeos/farmacologia , Suínos , Doenças dos Suínos/prevenção & controle
13.
Front Microbiol ; 10: 1853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474954

RESUMO

Antiviral compounds targeting cellular metabolism instead of virus components have become an interesting issue for preventing and controlling the spread of virus infection, either as sole treatment or as a complement of vaccination. Some of these compounds are involved in the control of lipid metabolism and/or membrane rearrangements. Here, we describe the effect of three of these cell-targeting antivirals: lauryl gallate (LG), valproic acid (VPA), and cerulenin (CRL) in the multiplication of viruses causing important porcine diseases. The results confirm the antiviral action in cultured cells of LG against African swine fever virus (ASFV), foot and mouth disease virus (FMDV), vesicular stomatitis virus (VSV), and swine vesicular disease virus (SVDV), as well as the inhibitory effect of VPA and CRL on ASFV infection. Other gallate esters have been also assayed for their inhibition of FMDV growth. The combined action of these antivirals has been also tested in ASFV infections, with some synergistic effects when LG and VPA were co-administered. Regarding the mode of action of the antivirals, experiments on the effect of the time of its addition in infected cell cultures indicated that the inhibition by VPA and CRL occurred at early times after ASFV infection, while LG inhibited a late step in FMDV infection. In all the cases, the presence of the antiviral reduced or abolished the induction of virus-specific proteins. Interestingly, LG also reduced mortality and FMDV load in a mouse model. The possible use of cell-targeted antivirals against porcine diseases is discussed.

14.
J Virol ; 90(21): 9725-9732, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535044

RESUMO

Equine rhinitis A virus (ERAV) is a picornavirus associated with respiratory disease in horses and is genetically closely related to foot-and-mouth disease virus (FMDV), the prototype aphthovirus. ERAV has recently gained interest as an FMDV alternative for the study of aphthovirus biology, including cell entry and uncoating or antiviral testing. As described for FMDV, current data support that acidic pH inside cellular endosomes triggers ERAV uncoating. In order to provide further insights into aphthovirus uncoating mechanism, we have isolated a panel of ERAV mutants with altered acid sensitivity and that differed on their degree of sensitivity to the inhibition of endosome acidification. These results provide functional evidence of the involvement of acidic pH on ERAV uncoating within endosomes. Remarkably, all amino acid substitutions found in acid-labile or acid-resistant ERAVs were located in the capsid protein VP3, indicating that this protein plays a pivotal role for the control of pH stability of the ERAV capsid. Moreover, all amino acid substitutions mapped at the intraprotomer interface between VP3 and VP2 or between VP3 and the N terminus of VP1. These results expand our knowledge on the regions that regulate the acid stability of aphthovirus capsid and should be taken into account when using ERAV as a surrogate of FMDV. IMPORTANCE: The viral capsid constitutes a sort of dynamic nanomachine that protects the viral genome against environmental assaults while accomplishing important functions such as receptor attachment for viral entry or genome release. We have explored the molecular determinants of aphthovirus capsid stability by isolating and characterizing a panel of equine rhinitis A virus mutants that differed on their acid sensitivity. All the mutations were located within a specific region of the capsid, the intraprotomer interface among capsid proteins, thus providing new insights into the regions that control the acid stability of aphthovirus capsid. These findings could positively contribute to the development of antiviral approaches targeting aphthovirus uncoating or the refinement of vaccine strategies based on capsid stabilization.


Assuntos
Ácidos/metabolismo , Aphthovirus/genética , Proteínas do Capsídeo/genética , Cavalos/virologia , Substituição de Aminoácidos/genética , Animais , Antivirais/farmacologia , Aphthovirus/efeitos dos fármacos , Capsídeo/efeitos dos fármacos , Endossomos/virologia , Vírus da Febre Aftosa/efeitos dos fármacos , Genoma Viral/genética , Concentração de Íons de Hidrogênio , Mutação/genética , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/virologia , Internalização do Vírus/efeitos dos fármacos
15.
Vaccine ; 34(18): 2066-73, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26993334

RESUMO

Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen.


Assuntos
Infecções por Flavivirus/prevenção & controle , Vacinas contra Encefalite Japonesa/imunologia , Receptor de Interferon alfa e beta/genética , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vírus da Encefalite Japonesa (Subgrupo) , Camundongos , Camundongos Knockout , Proteínas do Envelope Viral/imunologia
16.
PLoS One ; 9(9): e108056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229345

RESUMO

West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus. High WNV virulence was mainly associated with lineage 1 strains, but recent outbreaks have unveiled circulation of highly virulent lineage 2 strains. Co-expression of flavivirus prM and E glycoproteins drives the assembly of recombinant subviral particles (RSPs) that share antigenic features with virions. Mouse immunization with lineage 1 WNV RSPs induced a potent humoral response against WNV with production of neutralizing antibodies. A single inoculation of RSPs formulated with Al(OH)3 as adjuvant protected mice against a lethal challenge with WNV strains from lineage 1 or 2. The cross-reactivity of the response elicited by these RSPs was analyzed against the related flavivirus Usutu virus (USUV), which shares multiple ecological and antigenic features with WNV. Immunization with WNV-RSPs increased specific, although low, antibody titers found upon subsequent USUV infection.


Assuntos
Reações Cruzadas , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Antígenos Virais/imunologia , Feminino , Variação Genética , Células HEK293 , Células HeLa , Humanos , Imunidade Humoral , Imunização , Camundongos , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Vírus do Nilo Ocidental/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA