Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Rep ; 14(1): 10947, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740811

RESUMO

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Assuntos
Aeromonas salmonicida , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Doenças dos Peixes , Salmo salar , Animais , Salmo salar/imunologia , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Aeromonas salmonicida/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Rim Cefálico/imunologia , Ração Animal , Óleo de Soja/farmacologia , Óleos de Peixe/farmacologia , Aquicultura/métodos
2.
Front Mol Biosci ; 9: 931548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213116

RESUMO

We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.

3.
Methods Mol Biol ; 2508: 319-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737248

RESUMO

The reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) is considered to be the gold standard for gene expression research. However, for this claim to be valid, RT-qPCR studies must test and optimize the quality of its RNA templates and assays. This chapter describes the experimental procedures required to generate reliable and reproducible gene expression results using RT-qPCR.


Assuntos
RNA , Transcrição Reversa , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Front Immunol ; 13: 806484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418993

RESUMO

Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.


Assuntos
Brânquias , Salmo salar , Animais , Biomarcadores/metabolismo , Brânquias/metabolismo , Fígado/metabolismo , PPAR gama/metabolismo , Salmo salar/genética
5.
Front Immunol ; 13: 804987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401509

RESUMO

Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. In the present study, pre-adult L. salmonis-infected and non-infected salmon were intraperitoneally injected with either formalin-killed Aeromonas salmonicida bacterin (ASAL) or phosphate-buffered saline (PBS). Dorsal skin samples from each injection/infection group (PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice) were collected at 24 h post-injection and used for transcriptome profiling using a 44K salmonid microarray platform. Microarray results showed no clear inflammation gene expression signatures and revealed extensive gene repression effects by pre-adult lice (2,189 down and 345 up-regulated probes) in the PBS-injected salmon (PBS/lice vs. PBS/no lice), which involved basic cellular (e.g., RNA and protein metabolism) processes. Lice repressive effects were not observed within the group of ASAL-injected salmon (ASAL/lice vs. ASAL/no lice); on the contrary, the observed skin transcriptome changes -albeit of lesser magnitude (82 up and 1 down-regulated probes)- suggested the activation in key immune and wound healing processes (e.g., neutrophil degranulation, keratinocyte differentiation). The molecular skin response to ASAL was more intense in the lice-infected (ASAL/lice vs. PBS/lice; 272 up and 11 down-regulated probes) than in the non-infected fish (ASAL/no lice vs. PBS/no lice; 27 up-regulated probes). Regardless of lice infection, the skin's response to ASAL was characterized by the putative activation of both antibacterial and wound healing pathways. The transcriptomic changes prompted by ASAL+lice co-stimulation (ASAL/lice vs. PBS/no lice; 1878 up and 3120 down-regulated probes) confirmed partial mitigation of lice repressive effects on fundamental cellular processes and the activation of pathways involved in innate (e.g., neutrophil degranulation) and adaptive immunity (e.g., antibody formation), as well as endothelial cell migration. The qPCR analyses evidenced immune-relevant genes co-stimulated by ASAL and lice in an additive (e.g., mbl2b, bcl6) and synergistic (e.g., hampa, il4r) manner. These results provided insight on the physiological response of the skin of L. salmonis-infected salmon 24 h after ASAL stimulation, which revealed immunostimulatory properties by the bacterin with potential applications in anti-lice treatments for aquaculture. As a simulated co-infection model, the present study also serves as a source of candidate gene biomarkers for sea lice and bacterial co-infection.


Assuntos
Aeromonas salmonicida , Coinfecção , Copépodes , Doenças dos Peixes , Ftirápteros , Salmo salar , Aeromonas salmonicida/genética , Animais , Vacinas Bacterianas , Doenças dos Peixes/genética , Formaldeído , Ftirápteros/genética , Salmo salar/genética , Transcriptoma
6.
Mol Ecol ; 31(9): 2712-2729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243721

RESUMO

Due to multigeneration domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1  hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1  hybrids using 44 K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1  hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.


Assuntos
Salmo salar , Adaptação Fisiológica , Animais , Hibridização Genética , América do Norte , Salmo salar/genética , Transcriptoma/genética
8.
Biology (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202562

RESUMO

The importance of dietary omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios for human health has been extensively examined. However, its impact on fish physiology, and the underlying molecular mechanisms, are less well understood. This study investigated the influence of plant-based diets (12-week exposure) with varying ω6:ω3 (0.4-2.7) on the hepatic transcriptome of Atlantic salmon. Using 44 K microarray analysis, genes involved in immune and inflammatory response (lect2a, itgb5, helz2a, p43), lipid metabolism (helz2a), cell proliferation (htra1b), control of muscle and neuronal development (mef2d) and translation (eif2a, eif4b1, p43) were identified; these were differentially expressed between the two extreme ω6:ω3 dietary treatments (high ω6 vs. high ω3) at week 12. Eight out of 10 microarray-identified transcripts showed an agreement in the direction of expression fold-change between the microarray and qPCR studies. The PPARα activation-related transcript helz2a was confirmed by qPCR to be down-regulated by high ω6 diet compared with high ω3 diet. The transcript expression of two helz2 paralogues was positively correlated with ω3, and negatively with ω6 FA in both liver and muscle, thus indicating their potential as biomarkers of tissue ω6:ω3 variation. Mef2d expression in liver was suppressed in the high ω6 compared to the balanced diet (ω6:ω3 of 2.7 and 0.9, respectively) fed fish, and showed negative correlations with ω6:ω3 in both tissues. The hepatic expression of two lect2 paralogues was negatively correlated with viscerosomatic index, while htra1b correlated negatively with salmon weight gain and condition factor. Finally, p43 and eif2a were positively correlated with liver Σω3, while these transcripts and eif4b2 showed negative correlations with 18:2ω6 in the liver. This suggested that some aspects of protein synthesis were influenced by dietary ω6:ω3. In summary, this nutrigenomic study identified hepatic transcripts responsive to dietary variation in ω6:ω3, and relationships of transcript expression with tissue (liver, muscle) lipid composition and other phenotypic traits.

9.
J Agric Food Chem ; 69(9): 2697-2710, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33476167

RESUMO

Fish oil, the most abundant natural source of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is a limited resource; however, terrestrial oils are used as an alternative in fish nutrition. The liver of Atlantic salmon is able to synthesize these two long-chain n-3 polyunsaturated fatty acids (n-3LC-PUFAs) from α-linolenic acid (ALA), but the dietary levels of EPA + DHA and the ratios of linoleic acid (LNA) to ALA may affect its abilities. Feeding Atlantic salmon four experimental diets containing EPA + DHA at 0.3 and 1.0% of dietary levels accompanied with high and low LNA/ALA ratios showed that low LNA/ALA ratios increased the proportions of EPA + DHA in phospholipids (PLs) and neutral lipids (NLs). The pattern of PL-to-NL ratios of n-3 LC-PUFA proportions matched the saw tooth pattern of LNA/ALA ratios in diets. Overall, when fish oil is removed from salmon diets, the dietary LNA/ALA ratio must be reduced to stimulate biosynthesis of n-3 LC-PUFAs in the liver.


Assuntos
Salmo salar , Ácido alfa-Linolênico , Animais , Dieta/veterinária , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos , Fígado , Fosfolipídeos
10.
Front Immunol ; 12: 787033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046944

RESUMO

Sea lice (Lepeophtheirus salmonis) are ectoparasitic copepods that cause significant economic loss in marine salmoniculture. In commercial salmon farms, infestation with sea lice can enhance susceptibility to other significant pathogens, such as the highly contagious infectious salmon anemia virus (ISAv). In this study, transcriptomic analysis was used to evaluate the impact of four experimental functional feeds (i.e. 0.3% EPA/DHA+high-ω6, 0.3% EPA/DHA+high-ω6+immunostimulant (IS), 1% EPA/DHA+high-ω6, and 1% EPA/DHA+high-ω3) on Atlantic salmon (Salmo salar) during a single infection with sea lice (L. salmonis) and a co-infection with sea lice and ISAv. The overall objectives were to compare the transcriptomic profiles of skin between lice infection alone with co-infection groups and assess differences in gene expression response among animals with different experimental diets. Atlantic salmon smolts were challenged with L. salmonis following a 28-day feeding trial. Fish were then challenged with ISAv at 18 days post-sea lice infection (dpi), and maintained on individual diets, to establish a co-infection model. Skin tissues sampled at 33 dpi were subjected to RNA-seq analysis. The co-infection's overall survival rates were between 37%-50%, while no mortality was observed in the single infection with lice. With regard to the infection status, 756 and 1303 consensus differentially expressed genes (DEGs) among the four diets were identified in "lice infection vs. pre-infection" and "co-infection vs. pre-infection" groups, respectively, that were shared between the four experimental diets. The co-infection groups (co-infection vs. pre-infection) included up-regulated genes associated with glycolysis, the interferon pathway, complement cascade activity, and heat shock protein family, while the down-regulated genes were related to antigen presentation and processing, T-cell activation, collagen formation, and extracellular matrix. Pathway enrichment analysis conducted between infected groups (lice infection vs. co-infection) resulted in several immune-related significant GO terms and pathways unique to this group, such as "autophagosome", "cytosolic DNA-sensing pathway" and "response to type I interferons". Understanding how experimental functional feeds can impact the host response and the trajectory of co-infections will be an essential step in identifying efficacious intervention strategies that account for the complexities of disease in open cage culture.


Assuntos
Ração Animal , Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar/microbiologia , Animais , Aquicultura , Coinfecção , Copépodes , Dieta , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Pele , Transcriptoma
11.
Front Immunol ; 12: 789465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035387

RESUMO

Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. "phagocytosis", "defense response to bacterium", "inflammatory response") and adaptive (e.g. "regulation of T cell activation", "antigen processing and presentation of exogenous antigen") immune processes, while a small number of general physiological processes (e.g. "apoptotic process", development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.


Assuntos
Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Piscirickettsia/patogenicidade , Infecções por Piscirickettsiaceae/genética , Salmo salar/genética , Transcriptoma , Animais , Carga Bacteriana , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Imunidade Celular , Imunidade Inata , Rim/imunologia , Rim/microbiologia , Piscirickettsia/imunologia , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Salmo salar/imunologia , Salmo salar/microbiologia , Transdução de Sinais , Fatores de Tempo
12.
Front Mol Biosci ; 7: 602587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381522

RESUMO

The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.0, or 1.4%) and ω6:ω3 (high ω6, high ω3, or balanced) on tissue lipid composition, and transcript expression of genes involved in fatty acid and eicosanoid metabolism in Atlantic salmon head kidney. Tissue fatty acid composition was reflective of the diet with respect to C18 PUFA and MUFA levels (% of total FA), and ω6:ω3 (0.5-1.5). Fish fed 0.3% EPA+DHA with high ω6 (0.3% EPA+DHA↑ω6) had the highest increase in proportions (1.7-2.3-fold) and in concentrations (1.4-1.8-fold) of arachidonic acid (ARA). EPA showed the greatest decrease in proportion and in concentration (by ~½) in the 0.3% EPA+DHA↑ω6 fed fish compared to the other treatments. However, no differences were observed in EPA proportions among salmon fed the high ω3 (0.3 and 1.0% EPA+DHA) and balanced (1.4% EPA+DHA) diets, and DHA proportions were similar among all treatments. Further, the transcript expression of elovl5a was lowest in the 0.3% EPA+DHA↑ω6 fed fish, and correlated positively with 20:3ω3, 20:4ω3 and EPA:ARA in the head kidney. This indicates that high dietary 18:3ω3 promoted the synthesis of ω3 LC-PUFA. Dietary EPA+DHA levels had a positive impact on elovl5a, fadsd5 and srebp1 expression, and these transcripts positively correlated with tissue ΣMUFA. This supported the hypothesis that LC-PUFA synthesis is positively influenced by tissue MUFA levels in Atlantic salmon. The expression of pparaa was higher in the 0.3% EPA+DHA↑ω6 compared to the 0.3% EPA+DHA↑ω3 fed fish. Finally, significant correlations between head kidney fatty acid composition and the expression of eicosanoid synthesis-related transcripts (i.e., 5loxa, 5loxb, cox1, cox2, ptges2, ptges3, and pgds) illustrated the constitutive relationships among fatty acids and eicosanoid metabolism in salmon.

13.
Front Immunol ; 11: 567838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193341

RESUMO

Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.


Assuntos
Imunidade Adaptativa/genética , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica , Imunidade Inata/genética , Salmo salar/genética , Salmo salar/microbiologia , Transcriptoma , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Renibacterium , Reprodutibilidade dos Testes , Transdução de Sinais
14.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190648, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32536300

RESUMO

Atlantic salmon smolts (approx. 20-months old) were fed experimental diets with different combinations of omega-6:omega-3 fatty acids (FAs) (high-ω6, high-ω3, or balanced) and eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA) levels (0.3, 1.0 or 1.4%) for 12 weeks. Muscle FA (% total FA) reflected dietary C18-polyunsaturated FA; however, muscle EPA per cent and content (mg g-1) were not different in salmon fed high-ω3 or balanced diets. Muscle DHA per cent was similar among treatments, while DHA content increased in fish fed 1.4% EPA + DHA, compared with those fed 0.3-1.0% EPA + DHA combined with high-ω6 FA. Muscle 20:3ω6 (DGLA) content was highest in those fed high-ω6 with 0.3% EPA + DHA. Quantitative polymerase chain reaction analyses on liver RNA showed that the monounsaturated FA synthesis-related gene, scdb, was upregulated in fish fed 1.0% EPA + DHA with high-ω6 compared to those fed 0.3% EPA + DHA. In high-ω3-fed salmon, liver elovl2 transcript levels were higher with 0.3% EPA + DHA than with 1.0% EPA + DHA. In high-ω6-fed fish, elovl2 did not vary with EPA + DHA levels, but it was positively correlated with muscle ARA, 22:4ω3 and DGLA. These results suggest dietary 18:3ω3 elongation contributed to maintaining muscle EPA + DHA levels despite a two- to threefold change in dietary proportions, while 18:2ω6 with 0.3% EPA + DHA increased muscle DGLA more than arachidonic acid (ARA). Positive correlations between hepatic elovl2 and fabp10a with muscle ω6:ω3 and EPA + DHA + ARA, respectively, were confirmed by reanalysing data from a previous salmon trial with lower variations in dietary EPA + DHA and ω6:ω3 ratios. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Salmo salar/genética , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Fígado/química , Músculo Esquelético/química , Distribuição Aleatória , Salmo salar/metabolismo
15.
Mar Biotechnol (NY) ; 22(4): 511-525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32495111

RESUMO

The simultaneous quantification of several transcripts via multiplex PCR can accelerate research in fish physiological responses to diet and enable the development of superior aquafeeds for farmed fish. We designed two multiplex PCR panels that included assays for 40 biomarker genes representing key aspects of fish physiology (growth, metabolism, oxidative stress, and inflammation) and 3 normalizer genes. We used both panels to assess the physiological effects of replacing fish meal and fish oil by terrestrial alternatives on Atlantic salmon smolts. In a 14-week trial, we tested three diets based on marine ingredients (MAR), animal by-products and vegetable oil (ABP), and plant protein and vegetable oil (VEG). Dietary treatments affected the expression of genes involved in hepatic glucose and lipid metabolism (e.g., srebp1, elovl2), cell redox status (e.g., txna, prdx1b), and inflammation (e.g., pgds, 5loxa). At the multivariate level, gene expression profiles were more divergent between fish fed the marine and terrestrial diets (MAR vs. ABP/VEG) than between the two terrestrial diets (ABP vs. VEG). Liver ARA was inversely related to glucose metabolism (gck)- and growth (igfbp-5b1, htra1b)-related biomarkers and hepatosomatic index. Liver DHA and EPA levels correlated negatively with elovl2, whereas ARA levels correlated positively with fadsd5. Lower hepatic EPA/ARA in ABP-fed fish correlated with the increased expression of biomarkers related to mitochondrial function (fabp3a), oxidative stress (txna, prdx1b), and inflammation (pgds, 5loxa). The analysis of hepatic biomarker gene expression via multiplex PCR revealed potential physiological impacts and nutrient-gene interactions in Atlantic salmon fed lower levels of marine-sourced nutrients.


Assuntos
Dieta/veterinária , Fígado/metabolismo , Salmo salar/fisiologia , Ração Animal/análise , Animais , Aquicultura , Biomarcadores , Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Reação em Cadeia da Polimerase Multiplex/veterinária , Salmo salar/genética
16.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244468

RESUMO

Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.


Assuntos
Copépodes/fisiologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Imunomodulação , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma , Animais , Copépodes/patogenicidade , Suscetibilidade a Doenças , Feminino , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica/veterinária , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Imunidade , Redes e Vias Metabólicas , Análise em Microsséries
17.
Mar Biotechnol (NY) ; 22(2): 263-284, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32040779

RESUMO

The optimal dietary requirement of omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for Atlantic salmon that promotes growth and health warrants careful investigation. We used 44K microarrays to study the influence of increasing levels of dietary DHA + EPA (0, 1.0, and 1.4% of the diet, as formulated) in the presence of high linoleic acid (LA) on Atlantic salmon growth and liver transcriptome. After a 14-week feeding trial, Atlantic salmon fed diet ω3LC0 (i.e. 0% of DHA + EPA) showed significantly lower final weight and weight gain, and higher feed conversion ratio compared with ω3LC1.0 and ω3LC1.4 diet groups. The microarray experiment identified 55 and 77 differentially expressed probes (Rank Products analyses; PFP < 10%) in salmon fed diets ω3LC1.4 and ω3LC1.0 compared with those fed diet ω3LC0, respectively. The comparison between ω3LC1.4 and ω3LC1.0 revealed 134 differentially expressed probes. The microarray results were confirmed by qPCR analyses of 22 microarray-identified transcripts. Several key genes involved in fatty acid metabolism including LC-PUFA synthesis were upregulated in fish fed ω3LC0 compared with both other groups. Hierarchical clustering and linear regression analyses of liver qPCR and fatty acid composition data demonstrated significant correlations. In the current study, 1.0% ω3 LC-PUFA seemed to be the minimum requirement for Atlantic salmon based on growth performance; however, multivariate statistical analyses (PERMANOVA and SIMPER) showed that fish fed ω3LC1.0 and ω3LC1.4 diets had similar hepatic fatty acid profiles but marked differences in the transcript expression of biomarker genes involved in redox homeostasis (mgst1), immune responses (mxb, igmb, irf3, lect2a, srk2, and lyz2), and LC-PUFA synthesis (srebp1, fadsd5, and elovl2). This research has provided new insights into dietary requirement of DHA and EPA and their impact on physiologically important pathways in addition to lipid metabolism in Atlantic salmon.


Assuntos
Dieta/veterinária , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Salmo salar/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aquicultura , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Homeostase , Metabolismo dos Lipídeos , Fígado/metabolismo , Oxirredução , Salmo salar/genética , Salmo salar/imunologia
18.
Fish Shellfish Immunol ; 97: 656-668, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31891812

RESUMO

AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.


Assuntos
Hormônio do Crescimento/imunologia , Imunidade Inata , Salmo salar/imunologia , Temperatura , Triploidia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Aquicultura/métodos , Feminino , Expressão Gênica/imunologia , Hormônio do Crescimento/genética , Indutores de Interferon/administração & dosagem , Indutores de Interferon/imunologia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Salmo salar/genética , Estresse Fisiológico/efeitos dos fármacos , Viroses/imunologia , Viroses/veterinária
19.
Fish Shellfish Immunol ; 98: 937-949, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31770640

RESUMO

Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.


Assuntos
Vacinas Bacterianas/farmacologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Positivas/veterinária , Rim Cefálico/imunologia , Micrococcaceae/imunologia , Salmo salar/imunologia , Transcriptoma/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Formaldeído/química , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Nefropatias/imunologia , Nefropatias/microbiologia , Nefropatias/prevenção & controle , Nefropatias/veterinária , Renibacterium , Salmo salar/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/farmacologia
20.
Cells ; 8(12)2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817907

RESUMO

MicroRNAs (miRNAs) are key regulators in fish immune responses. However, no study has previously characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida (ASAL) on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. To this end, first, we performed small RNA deep sequencing and qPCR analyses to identify and confirm pIC- and/or ASAL-responsive miRNAs in the head kidney of salmon fed a control diet. DESeq2 analyses identified 12 and 18 miRNAs differentially expressed in pIC and ASAL groups, respectively, compared to the controls. Fifteen of these miRNAs were studied by qPCR; nine remained significant by qPCR. Five miRNAs (miR-27d-1-2-5p, miR-29b-2-5p, miR-146a-5p, miR-146a-1-2-3p, miR-221-5p) were shown by qPCR to be significantly induced by both pIC and ASAL. Second, the effect of CpG-containing functional feed on miRNA expression was investigated by qPCR. In pre-injection samples, 6 of 15 miRNAs (e.g., miR-181a-5-3p, miR-462a-3p, miR-722-3p) had significantly lower expression in fish fed CpG diet than control diet. In contrast, several miRNAs (e.g., miR-146a-1-2-3p, miR-192a-5p, miR-194a-5p) in the PBS- and ASAL-injected groups had significantly higher expression in CpG-fed fish. Multivariate statistical analyses confirmed that the CpG diet had a greater impact on miRNA expression in ASAL-injected compared with pIC-injected fish. This study identified immune-relevant miRNA biomarkers that will be valuable in the development of diets to combat infectious diseases of salmon.


Assuntos
Adjuvantes Imunológicos/farmacologia , Biomarcadores/metabolismo , MicroRNAs/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Hormônios de Inseto/farmacologia , Poli I-C/farmacologia , Salmo salar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA