Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Sports Act Living ; 6: 1425475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983713

RESUMO

Considering the importance of body composition and lower-body strength and power for basketball players' on-court performance, as well as a lack of sports science research focused on female athletes, the purpose of the present investigation was to record the anthropometric and countermovement vertical jump (CMJ) characteristics of top-tier U16 and U18 female basketball players and examine between-group differences in the aforementioned tests. Thirty-two athletes who were a part of the national basketball academy volunteered to participate in the present investigation. Following the body composition assessment conducted via a segmental multifrequency bioimpedance analyzer, athletes performed three CMJs while standing on a force plate system sampling at 1000 Hz. Independent t-test and Mann-Whitney U-test were used to examine between-group differences. The findings reveal significant differences in body composition and lower-body neuromuscular performance characteristics between female basketball players ages 16 and 18. Although no differences were observed in muscle and body fat percentages, the U18 group had significantly greater height, overall body mass (both muscle and fat mass), as well as greater segmental fat-free mass (trunk, both legs and arms), intracellular and extracellular water, and body mass index when compared to their U16 counterparts. On the other hand, the U18 group demonstrated longer eccentric, concentric, and braking phase duration, as well as overall contraction time when compared to the U16 players. In addition, the U18 athletes exhibited higher eccentric mean force and power, concentric impulse, peak power, and mean and peak force.

2.
Front Sports Act Living ; 6: 1387918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840953

RESUMO

The purpose of the present study was to examine differences in game-related statistics between winning and losing game outcomes and determine which performance parameters have the greatest impact in classifying winning from losing game outcomes at the National Collegiate Athletic Association (NCAA) Division-I men's basketball level of competition. The data scraping technique was used to obtain publicly available data over a 2018-2019 season span. The total number of games examined was 5,147. Independent t-tests were used to examine statistically significant differences between winning and losing game outcomes, while a full model discriminant function analysis was used to determine the relative contribution of each game-related statistic and its ability to classify winning from losing game outcomes (p < 0.05). Alongside scoring a greater number of points at the end of the game, the findings of the present study indicate that winning teams: (a) attempted and made more field goals, three-point, and free-throw shots, (b) accumulated more defensive and total rebounds, assists, steals, and blocks, (c) had fewer turnovers and personal fouls, and (d) secured greater field goal, three-point, and free-throw shooting percentage. Moreover, the top three performance parameters discriminating winning from losing game outcomes were field goal percentage, defensive rebounds, and assists, accounting for 16.8%, 12.2%, and 12.0% of the total percentage of explained variance, respectively (i.e., 41.0% combined). Overall, these findings support the expected roles of offensive and defensive game-related statistics and provide further insight into how they work together to optimize the chances of securing the desired game outcome.

3.
Front Sports Act Living ; 6: 1399399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887688

RESUMO

With innovative force plate technology being available to many sports organizations worldwide that allow for time-efficient in-depth neuromuscular performance assessment, the purpose of the present study was to examine the relationship between some of the most commonly analyzed countermovement vertical jump (CVJ) force-time metrics and basketball playing time and efficiency. Twenty-four professional male basketball players volunteered to participate in the present study. The CVJ testing procedures were conducted within the first quarter of the competitive season span. Following a standardized warm-up protocol, each athlete stepped on a dual uni-axial force plate system sampling at 1,000 Hz and performed three maximum-effort CVJs with no arm swing. To minimize the possible influence of fatigue, each jump trial was separated by a 10-15 s rest interval and the average value across three jumps was used for performance analysis purposes. Basketball playing efficiency and average playing time were obtained at the end of the regular season competitive period from the coaching staff records and the official team records. Pearson product-moment correlation coefficients (r) were used to examine the strength of the relationships between force-time metrics and basketball playing time and efficiency, separately for each dependent variable (p < 0.05). A significant positive association was observed between playing efficiency and eccentric mean force and eccentric mean and peak power (r = 0.406-0.552). Similarly, an increase in eccentric mean power was positively correlated with the number of minutes played during the competitive season (r = 0.464). Moreover, the aforementioned relationship remained present even when eccentric mean power was expressed relative to the player's body mass (r = 0.406). Thus, the findings of the present study indicate that, at the professional level of men's basketball competition, CVJ eccentric strength and power have a positive impact on both playing time and efficiency.

4.
J Strength Cond Res ; 38(7): 1326-1329, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900179

RESUMO

ABSTRACT: Cabarkapa, D, Johnson, QR, Cabarkapa, DV, Philipp, NM, Eserhaut, DA, and Fry, AC. Changes in countermovement vertical jump force-time metrics during a game in professional male basketball players. J Strength Cond Res 38(7): 1326-1329, 2024-As technology within elite basketball advances and is more available to sporting organizations, novel approaches for assessing and addressing athletic performance during practice or competition are being continuously explored. The aim of this investigation was to examine changes in neuromuscular performance during live basketball play. Eight professional male basketball players volunteered to participate in this study. The testing procedures were conducted during a pre-tournament camp over a span of 2 days. During the first day, the athletes were familiarized with the testing procedures, and baseline measurements were obtained. Using a uni-axial force plate system sampling at 1,000 Hz, each athlete performed 3 countermovement vertical jumps (CVJ) without an arm swing before proceeding with their regular training activities. During the second day of the pre-tournament camp, the athletes repeated identical CVJ testing procedures before the start of the first quarter and post-first, second, third, and fourth quarter of a simulated 5-on-5 basketball game. Repeated-measures testing design was used to examine statistically significant differences in various force-time metrics of interest in comparison to the baseline levels (p < 0.05). Besides a trivial decrease in eccentric mean force, the findings of this study revealed no statistically significant changes in any force-time metrics of interest within both eccentric and concentric phases of the CVJ (i.e., mean and peak force and power, jump height, impulse, velocity, and contraction time). Thus, we can conclude that these variables were not sensitive to acute fatigue, suggesting that the neuromuscular performances of professional male basketball players tend to remain unchanged throughout a 5-on-5 simulated game.


Assuntos
Desempenho Atlético , Basquetebol , Humanos , Basquetebol/fisiologia , Masculino , Desempenho Atlético/fisiologia , Adulto Jovem , Força Muscular/fisiologia , Adulto , Movimento/fisiologia , Atletas , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Teste de Esforço/métodos
5.
Front Sports Act Living ; 6: 1407601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783868

RESUMO

Given the complex nature of the handball as a game, players are required to possess a distinct set of physical and physiological attributes to attain peak performance. With the countermovement vertical jump (CVJ) being widely implemented as a non-invasive and time-efficient testing modality in sports settings, the purpose of the present study was twofold: (a) to establish a CVJ profile of professional female handball players and (b) to examine differences in force-time metrics between starters and non-starters. Forty-two professional female handball players (e.g., SuperLeague) volunteered to participate in this study. Each athlete performed three maximum-effort CVJs with no arm swing while standing on a uni-axial force plate system sampling at 1,000 Hz. Independent t-tests were used to examine differences in each variable between starters and non-starters. The results revealed that starters attained superior performance within the eccentric phase of the CVJ when compared to non-starters, particularly in terms of eccentric peak velocity (-0.957 ± 0.242 vs. -0.794 ± 0.177 m·s-1), eccentric mean power (320.0 ± 77.7 vs. 267.1 ± 75.2 W), and eccentric peak power (929.0 ± 388.1 vs. 684.4 ± 214.2 W). While not reaching the level of statistical significance, moderate-to-large effect sizes were observed for concentric impulse, peak velocity, and mean and peak force and power, all in favor of players included in the starting lineup (g = 0.439-0.655). Overall, these findings suggest that at the top-tier level of handball competition, the ability to secure a spot in a starting lineup may be possibly influenced by the athlete's eccentric performance capabilities. Thus, the development of lower-body eccentric strength and power may positively impact on-court athlete performance and ultimately help the team secure the desired game outcome.

6.
Front Sports Act Living ; 6: 1394739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799031

RESUMO

Given its fast-growing popularity and unique on-court competitive demands, 3 × 3 basketball has captured a considerable amount of attention over recent years. However, unlike research focused on studying 5 × 5 basketball players, there is a lack of scientific literature focused on examining countermovement vertical jump (CMJ) and sprint performance characteristics of 3 × 3 athletes. Thus, the purpose of the present study was to compare force-time metrics during both eccentric and concentric phases of the CMJ and acceleration and deceleration capabilities between 3 × 3 and 5 × 5 top-tier professional male basketball athletes. Ten 3 × 3 and eleven 5 × 5 professional basketball players volunteered to participate in the present study. Upon completion of a standardized warm-up, each athlete performed three maximum-effort CMJs, followed by two 10 m sprints. A uni-axial force plate system sampling at 1,000 Hz was used to analyze CMJ force-time metrics and a radar gun sampling at 47 Hz was used to derive sprint acceleration-deceleration measures. Independent t-tests and Hedge's g were used to examine between-group statistically significant differences (p < 0.05) and effect size magnitudes. The findings of the present study reveal that 3 × 3 and 5 × 5 professional male basketball players tend to display similar neuromuscular performance characteristics as no significant differences were observed in any force-time metric during both eccentric and concentric phases of the CMJ (g = 0.061-0.468). Yet, prominent differences were found in multiple measures of sprint performance, with large effect size magnitudes (g = 1.221-1.881). Specifically, 5 × 5 basketball players displayed greater average and maximal deceleration and faster time-to-stop than their 3 × 3 counterparts. Overall, these findings provide reference values that sports practitioners can use when assessing athletes' CMJ and sprint performance capabilities as well as when developing sport-specific training regimens to mimic on-court competitive demands.

7.
Front Sports Act Living ; 6: 1389001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590296

RESUMO

As one of the fundamental volleyball skills, countermovement vertical jump (CMJ) has been commonly implemented in the applied sports setting as a non-invasive and time-efficient assessment of athletes' lower-body neuromuscular function. The purpose of the present study was to examine the differences in CMJ characteristics between starters and non-starters within a cohort of professional female volleyball players. Nineteen athletes competing in one of the top European leagues (i.e., SuperLeague) volunteered to participate in the present investigation. Following the completion of a warm-up protocol, each athlete performed three maximal-effort CMJs with no arm swing while standing on a uni-axial force plate system sampling at 1,000 Hz. The following force-time metrics were used for performance analysis purposes: braking phase duration and impulse, eccentric and concentric duration, mean and peak force and power, contraction time, jump height, and reactive strength index-modified. Mann-Whitney U and independent t-tests revealed no statistically significant differences (p > 0.05) during both eccentric and concentric phases of CMJ between the players included in the starting lineup (n = 9) and their substitutions (n = 10), with the effect sizes being small to moderate in magnitude (g = 0.053-0.683). While further research is warranted on this topic, these results suggest that securing a position in a starting lineup at the professional level of volleyball play may be more contingent on the player's ability to proficiently execute sport-specific skills (e.g., blocking, attacking), rather than the performance on the CMJ assessment, considering that the observed values for both groups fall within the desired ranges for this specific population of athletes.

8.
J Strength Cond Res ; 38(2): e72-e77, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258833

RESUMO

ABSTRACT: Cabarkapa, DV, Cabarkapa, D, Philipp, NM, and Fry, AC. Competitive season-long changes in countermovement vertical jump force-time metrics in female volleyball players. J Strength Cond Res 38(2): e72-e77, 2024-Although force plates remain one of the most widely used tools for neuromuscular performance assessment in applied sports-specific settings, there is still a lack of scientific literature focused on studying changes in countermovement vertical jump (CVJ) performance in team sports such as volleyball, especially within the female athlete population. Thus, the purpose of the present study was to examine season-long neuromuscular performance changes in volleyball players. Eighteen National Association of Intercollegiate Athletics Division-I collegiate female athletes performed 3 maximal-effort CVJs while standing on a uniaxial force plate system sampling at 1,000 Hz at 5 different testing timepoints throughout a competitive season span (∼11 weeks). The testing sessions were separated 2-3 weeks apart and performed at the approximately same time of the day (12:00 hours). Repeated-measures analysis of variance revealed that both concentric and eccentric force-time metrics remain relatively unchanged throughout a regular season span (e.g., concentric peak force and power, eccentric impulse and duration). However, the eccentric metrics such as peak and mean power and peak velocity displayed a slight improvement after a brief tapering period purposely implemented before the post-season competition to optimize the athlete's recovery (∼15, 18, and 14% increase, respectively). In addition, the outcome metrics such as vertical jump height and reactive strength index-modified did not display notable fluctuations across the competitive season span. These findings can help coaches, sports scientists, and strength and conditioning practitioners to obtain a deeper insight into collegiate female athletes' force-time characteristics that may aid with developing adequate training regimens targeted toward optimizing on-court performance.


Assuntos
Voleibol , Humanos , Feminino , Estações do Ano , Atletas , Posição Ortostática , Esportes de Equipe
9.
Sports (Basel) ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999447

RESUMO

Although different strategies have been implemented to manage recovery-fatigue status in athletes, there is still a lack of consensus on which recovery protocols have the greatest impact and effectiveness when implemented with basketball players, including both physiological and psychological recovery methods. Thus, the purpose of this systematic review is to: (a) determine which recovery methods attain the greatest benefit in restoring the process of attenuating fatigue and (b) provide sports practitioners with guidelines on how some of the most effective recovery strategies can be used to optimize athletes' recovery and ultimately enhance their performance. Using the PRISMA guidelines, a total of 3931 research reports were obtained through four database searches (i.e., PubMed, Scopus, Cochrane, and Web of Science), from which only 25 met the inclusion and exclusion criteria. The recovery protocols analyzed in this systematic review were: sleep, nutrition, hydration, ergogenic aids, cold-water immersion, compression garments, massage, acupuncture, tapering, mindfulness, and red-light irradiation. The results revealed that all recovery strategies are capable of attenuating fatigue and enhancing recovery in basketball players to a certain degree. However, an individualized approach should be promoted, where a combination of proactive recovery modalities appears to result in the most rapid rates of recovery and athletes' ability to maintain high-level performance. Recovery should be programmed as an integral component of training regimens. Also, cooperation and communication between coaches, players, and the rest of the team staff members are essential in minimizing the risk of non-functional overreaching or injury and optimizing basketball players' on-court performance.

10.
Front Sports Act Living ; 5: 1272478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953862

RESUMO

The purpose of the present study was to examine the acute impact of resistance exercise on basketball shooting mechanics and accuracy. Ten resistance-trained recreationally active men with previous basketball playing experience (x̄ ± SD; height = 182.6 ± 9.7 cm; body mass = 79.2 ± 13.9 kg; age = 25.6 ± 5.5 years) performed control, upper-body, and lower-body training sessions in randomized order followed by 5 sets of stationary free-throw (4.57 m), two-point (5.18 m) and three-point (6.75 m) basketball shooting drills in 30 min time increments. Each testing session was separated 3-7 days apart. Kinematic variables during both the preparatory and release phases of the shooting motion were derived from a high-definition camera recording at 120 fps positioned 10 m away perpendicular to the participant's shooting plane of motion. Restricted maximum likelihood linear mixed-effects model analysis revealed that a combination of all fixed effects could account for <1% of the total variance in each dependent variable pertaining to basketball shooting mechanics. A 9.9-11.8% decrease in two-point and three-point shooting accuracy was observed immediately following an upper-body training session. However, the observed performance suppression disappeared 30 min post-exercise completion. Overall, the findings suggest that performing upper-body or lower-body resistance training prior to on-court practice sessions has no impact on free-throw, two-point, and three-point biomechanical parameters examined in the present study and a minor acute impact on mid-range and long-range shooting accuracy in male basketball players.

11.
J Strength Cond Res ; 37(11): e609-e612, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883409

RESUMO

ABSTRACT: Cabarkapa, D, Cabarkapa, DV, Philipp, NM, Knezevic, OM, Mirkov, DM, and Fry, AC. Pre-post practice changes in countermovement vertical jump force-time metrics in professional male basketball players. J Strength Cond Res 37(11): e609-e612, 2023-Despite the countermovement vertical jump (CVJ) being one of the most popular noninvasive and time-efficient methods for monitoring neuromuscular status, there is a lack of scientific literature focused on examining fatigue-induced alterations in performance in elite athletes. Thus, the purpose of this study was to examine changes in force-time metrics pre-post practice in professional male basketball players. Seventeen athletes competing in first-tier and second-tier national basketball leagues in Europe participated in this study. While standing on a uniaxial force plate sampling at 1,000 Hz, each athlete completed 3 CVJs pre-practice and post-practice. The practice consisted of individual and team shooting drills, position-specific player development drills, 5-on-0 offensive actions, and 5-on-5 play, including full-court transition (∼2 hours). The findings reveal that pre-post practice changes in force-time metrics seem to be phase specific. Despite a trivial increase in eccentric mean force (920.4 ± 100.2, 929.4 ± 100.0 N), most changes were observed within the concentric phase of the CVJ. The concentric phase duration increased pre-post practice (0.233 ± 0.027, 0.242 ± 0.033 seconds), whereas concentric impulse (262.9 ± 18.8, 258.6 ± 21.6 N·s), peak velocity (2.93 ± 0.22, 2.86 ± 0.22 m·s-1), mean force (2052.4 ± 179.2, 2002.7 ± 188.2 N), mean power (3,165.5 ± 269.5, 3,030.9 ± 326.8 W), and peak power (5,523.4 ± 607.3, 5,246.6 ± 663.7 W) experienced a significant decrease. Moreover, alongside longer contraction time (0.663 ± 0.065, 0.686 ± 0.074 seconds), lower vertical jump height (41.0 ± 6.8, 38.9 ± 6.6 cm) and reactive strength index-modified (0.634 ± 0.113, 0.579 ± 0.111 m·s-1) values were observed post-practice. Overall, these findings may allow practitioners to detect fatigue-induced changes in CVJ force-time metrics in professional male basketball players that can ultimately improve the acute and longitudinal training-adaptation monitoring process.


Assuntos
Desempenho Atlético , Basquetebol , Humanos , Masculino , Força Muscular , Atletas , Europa (Continente)
12.
J Funct Morphol Kinesiol ; 8(3)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37754961

RESUMO

The purpose of the present study was to examine differences in kinematic characteristics between (a) proficient and non-proficient two-point and three-point shooters, (b) made and missed two-point and three-point shots within a proficient group of shooters, and (c) shots attempted from two-point and three-point shooting distances. Eighteen recreationally active females with previous basketball playing experience attempted 10 two-point (5.10 m) and 10 three-point shots (6.32 m) while facing directly to the basket. To eliminate the possible influence of fatigue, each shot was separated by a 5-10 s rest interval. Participants who made ≥50% of their two-point and ≥40% of their three-point shooting attempts were classified as proficient. A high-definition video camera recording at 30 fps and video analysis software (Kinovea) were used to obtain the kinematic variables of interest during both the preparatory phase (PP) and release phase (RP) of the shooting motion. The results indicate that proficient two-point shooters attained less hip and shoulder flexion during the PP and had greater release height and vertical displacement during the RP. Hip angle differentiated made from missed two-point shots within the proficient group of shooters, with made shots being depicted by less hip flexion. Significantly greater vertical displacement was observed in proficient three-point shooters during the RP. Additionally, the greater elbow and release angles separated made from missed three-point shots within the proficient group of shooters. In response to an increase in shooting distance, hip, knee, ankle, and shoulder angles during the PP all decreased. Moreover, an increase in shooting distance caused a decrease in release angle and an increase in vertical displacement during the RP, while the relative release height remained unchanged.

13.
Front Sports Act Living ; 5: 1218234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547821

RESUMO

The countermovement vertical jump (CVJ) is one of the most commonly implemented non-invasive and time-efficient testing modalities for lower-body neuromuscular performance assessment. With more practitioners having access to portable force plates, the purpose of this study was to examine position-specific differences in CVJ force-time metrics within a cohort of elite professional male basketball athletes. Twenty-eight athletes competing in top-tier European basketball leagues volunteered to participate in the present study. Following familiarization with testing procedures and a standardized warm-up protocol, each athlete performed three maximal-effort CVJ on a uni-axial force plate system with hands on the hips during the entire movement. To minimize the possible influence of fatigue, each jump trial was separated by an approximately 15-s rest interval. The mean value across three jumps was used for performance analysis purposes. The findings of the present study reveal notable position-specific differences during the eccentric phase of the CVJ, with centers having greater braking impulse, mean force, and mean power when compared to guards. However, when normalized by body mass, the observed differences during the eccentric phase of the CVJ were nonexistent. On the other hand, no significant differences in absolute mean and peak force and power were detected during the concentric phase of the CVJ. Yet, when normalized by the player's body mass, centers demonstrated inferior performance than guards for the same force-time metrics. Overall, these findings may help practitioners obtain a better insight into position-specific differences with regards to CVJ force-time characteristics as well as aid with individually tailored training regimen design.

14.
Front Sports Act Living ; 5: 1208915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601167

RESUMO

The winning game outcome in basketball is partially contingent on the team's ability to secure and make more free-throw shooting attempts, especially close to the end of the game. Thus, the purpose of the present study was to perform a comprehensive biomechanical analysis of the free-throw shooting motion to examine differences between (a) proficient (≥70%) and non-proficient shooters (<70%) and (b) made and missed free-throw shoots within the proficient group of shooters. Thirty-four recreationally active males with previous basketball playing experience attempted ten consecutive free-throw shots (4.57 m), with a 10-15 s rest interval between each shot. An innovative three-dimensional markerless motion capture system (SwRI Enable, San Antonio, TX, USA) composed of nine high-definition cameras recording at 120 Hz was used to capture and analyze the biomechanical parameters of interest. Independent t-tests and Mann-Whitney U tests were used to examine a presence of statistically significant differences. The findings of the present study reveal that proficient free-throw shooters performed the shooting motion in a more controlled manner by having significantly lower knee and center of mass peak and mean angular velocities. Also, proficient shooters attained a significantly greater release height and had less forward trunk lean when compared to non-proficient shooters at the time point of the ball release. Moreover, despite being beneficial for improvements in shooting accuracy, our findings suggest that overemphasizing the release height may be in certain instances counterproductive, as it may lead to more missed than made free-throw shots within the proficient group of shooters.

15.
J Strength Cond Res ; 37(8): 1687-1691, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494120

RESUMO

ABSTRACT: Cabarkapa, D, Eserhaut, DA, Cabarkapa, DV, Philipp, NM, and Fry, AC. Salivary testosterone and cortisol changes during a game in professional male basketball players. J Strength Cond Res 37(8): 1687-1691, 2023-The purpose of this study was to examine acute changes in salivary testosterone (T), cortisol (C), and testosterone-to-cortisol ratio (T/C) during a simulated 5-on-5 basketball game. Seven professional male basketball players volunteered to participate in this study. Repeated-measures analysis design was used to examine changes in hormonal concentrations across 8 testing time points: immediately upon arrival to the gymnasium-baseline (BS); post-warm-up (PW); post-first (P1Q), second (P2Q), third (P3Q), and fourth quarter (P4Q); and 30 (P30) and 60 minutes (P60) postgame. The findings of this study indicate that a simulated 5-on-5 basketball game provoked significant changes in salivary T, C, and T/C. When compared to the BS levels (x̄ ± SD [nmol·L-1]; 6.72 ± 2.53), salivary C concentration experienced a notable increase P3Q (16.20 ± 7.70) and remained elevated throughout the rest of the sampling periods, with values failing to return to BS levels P60 (11.88 ± 5.58). Conversely, a significant increase in salivary T occurred P1Q (0.76 ± 0.21) when compared to the BS levels (0.58 ± 0.12) and remained elevated up to P30 (0.75 ± 0.20), with values returning to BS levels P60 (0.63 ± 0.14). In addition, despite no significant intragame alterations, T/C exhibited a notable decrease P30 (0.06 ± 0.02) and P60 (0.07 ± 0.04), when compared to BS values (0.10 ± 0.04). Overall, these findings provide additional insight into the physiological stress that basketball players are exposed to during 5-on-5 competitive play and can be used to appropriately adjust and monitor training loads to optimize recovery and on-court basketball performance.


Assuntos
Desempenho Atlético , Basquetebol , Humanos , Masculino , Hidrocortisona/análise , Testosterona , Desempenho Atlético/fisiologia , Basquetebol/fisiologia , Estresse Fisiológico
16.
Sports (Basel) ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37368570

RESUMO

The purpose of the present study was to assess pre-post practice changes in countermovement vertical jump (CVJ) force-time metrics and to determine the relationship between internal and external load variables within a cohort of professional male volleyball players. Ten elite athletes competing in one of the top professional European leagues participated in the present study. While standing on a uni-axial force plate, each athlete performed three CVJs immediately prior to the regular training session. Each athlete wore an inertial measurement unit (VertTM) through an entire practice from which the following external load metrics were obtained: Stress (i.e., an algorithm-derived metric used to quantify the percentage of high-impact movements), Jumps (i.e., the total number of jumps performed during the practice session), and Active Minutes (i.e., the total amount of time performing dynamic movements). Immediately post-practice, each athlete completed another set of three CVJs and reported their subjective measure of internal load using a Rating of Perceived Exertion (RPE) scale (Borg CR-10). While no statistically significant differences were observed in any of the force-time metrics examined in the present study pre-post practice (e.g., eccentric and concentric peak and mean force and power, vertical jump height, contraction time, countermovement depth), our findings indicate a strong positive association between RPE and Stress (r = 0.713) and RPE and Jumps (r = 0.671). However, a weak non-statistically significant correlation was observed between RPE and Active Minutes (r = -0.038), indicating that internal load seems to be more dependent on the intensity rather than the duration of the training session for this sport.

17.
J Funct Morphol Kinesiol ; 8(2)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218865

RESUMO

With advancements in technology able to quantify wide-ranging features of human movement, the aim of the present study was to investigate the inter-device technological reliability of a three-dimensional markerless motion capture system (3D-MCS), quantifying different movement tasks. A total of 20 healthy individuals performed a test battery consisting of 29 different movements, from which 214 different metrics were derived. Two 3D-MCS located in close proximity were utilized to quantify movement characteristics. Independent sample t-tests with selected reliability statistics (i.e., intraclass correlation coefficient (ICC), effect sizes, and mean absolute differences) were used to evaluate the agreement between the two systems. The study results suggested that 95.7% of all metrics analyzed revealed negligible or small between-device effect sizes. Further, 91.6% of all metrics analyzed showed moderate or better agreement when looking at the ICC values, while 32.2% of all metrics showed excellent agreement. For metrics measuring joint angles (198 metrics), the mean difference between systems was 2.9 degrees, while for metrics investigating distance measures (16 metrics; e.g., center of mass depth), the mean difference between systems was 0.62 cm. Caution is advised when trying to generalize the study findings beyond the specific technology and software used in this investigation. Given the technological reliability reported in this study, as well as the logistical and time-related limitations associated with marker-based motion capture systems, it may be suggested that 3D-MCS present practitioners with an opportunity to reliably and efficiently measure the movement characteristics of patients and athletes. This has implications for monitoring the health/performance of a broad range of populations.

18.
Sports (Basel) ; 11(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37104166

RESUMO

With rapid technological development over recent years, the use of wearable athlete monitoring devices has substantially gained popularity. Thus, the purpose of the present study was to examine the impact of the anatomical placement of an accelerometer on biomechanical characteristics of countermovement vertical jump with and without an arm swing when compared to the force plate as a criterion measure. Seventeen recreationally active individuals (ten males and seven females) volunteered to participate in the present study. Four identical accelerometers sampling at 100 Hz were placed at the following anatomical locations: upper-back (UB), chest (CH), abdomen (AB), and hip (HP). While standing on a uni-axial force plate system sampling at 1000 Hz, each participant completed three non-sequential maximal countermovement vertical jumps with and without an arm swing. All devices recorded the data simultaneously. The following variables of interest were obtained from ground reaction force curves: peak concentric force (PCF), peak landing force (PLF), and vertical jump height (VJH). The findings of the present study reveal that the most appropriate anatomical locations to place the accelerometer device when attempting to estimate PCF, PLF, and VJH during a countermovement vertical jump with no arm swing are CH, AB, and UB, and during a countermovement vertical jump with an arm swing are UB, HP, and UB, respectively. Overall, these findings may help strength and conditioning professionals and sports scientists to select appropriate anatomical locations when using innovative accelerometer technology to monitor vertical jump performance characteristics.

19.
Sports (Basel) ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36668721

RESUMO

Despite exponential growth in popularity over the last decade and recently becoming an Olympic sport, the amount of scientific literature focused on depicting a profile of successful 3×3 basketball players is sparse. Thus, the purpose of this study was to present the physical and performance characteristics of professional 3×3 male basketball players and how they differ between elite and non-elite athletes. The anthropometrics, vertical jump, agility, and sprint performance parameters collected from ten players during regular training sessions were (x¯ ± SD): height (193.7 ± 4.5 cm), weight (89.2 ± 4.1 cm), wingspan (196.5 ± 5.2 cm), squat jump (43.5 ± 4.6 cm), countermovement jump with (53.3 ± 4.4 cm) and without an arm swing (46.3 ± 4.0 cm), reactive strength index (2.4 ± 0.3 m/s), t-test (10.3 ± 0.3 s), 505 drill (2.4 ± 0.2 s), 10 m sprint (1.5 ± 0.1 s), 30 m sprint (4.0 ± 0.3 s), shuttle run (27.7 ± 1.7 s), and bench press (98.2 ± 10.0 kg) and back squat (139.5 ± 17.6 kg) one repetition maximum. Additionally, the average and maximal heart rate (HR) responses during simulated games were 160.6 ± 8.0 and 188.5 ± 6.3 bpm, with players spending 6.3 ± 4.2, 11.4 ± 5.2, 13.9 ± 3.5, 26.4 ± 10.4, and 42.1 ± 10.0% of the total time in HR Zones 1-5, respectively. Interestingly, no statistically significant differences in the aforementioned physical and performance parameters were noted between elite and non-elite players. Overall, the findings of the present study provide coaches, sports scientists, and strength and conditioning practitioners with information that can aid in the athlete selection process, detection of areas for further improvement, and development of training regimens that resemble 3×3 basketball on-court competitive demands.

20.
Front Sports Act Living ; 5: 1327379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162698

RESUMO

With force plates being widely implemented for neuromuscular performance assessment in sport-specific settings and various force-time metrics being able to differentiate athletes based on their performance capabilities, the purpose of the present study was to examine the differences in countermovement vertical jump (CVJ) characteristics between starting and non-starting professional male basketball players (e.g., ABA League). Twenty-three athletes (height = 199.2 ± 7.7 kg, body mass = 94.2 ± 8.2 kg, age = 23.8 ± 4.9 years) volunteered to participate in the present investigation. Upon completion of a standardized warm-up protocol, each athlete performed three maximal-effort CVJs without an arm swing while standing on a uni-axial force plate system sampling at 1,000 Hz. Independent t-tests were used to examine statistically significant differences (p < 0.05) in each force-time metric between starters (n = 10) and non-starters (n = 13). No significant differences in any of the CVJ force-time metrics of interest were observed between the two groups, during both the eccentric and concentric phases of the movement (i.e., impulse, duration, peak velocity, and mean and peak force and power). Moreover, starters and non-starters demonstrated similar performance on CVJ outcome (e.g., jump height) and strategy metrics (e.g., countermovement depth). Overall, these findings suggest that at the professional level of play, the ability to secure a spot in the starting lineup is not primarily determined by the players' CVJ performance characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA