Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
2.
Haematologica ; 109(1): 115-128, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199127

RESUMO

Treatment options for patients with secondary acute myeloid leukemia (sAML) and AML with myeloid-related changes (AMLMRC) aged 60 to 75 years are scarce and unsuitable. A pivotal trial showed that CPX-351 improved complete remission with/without incomplete recovery (CR/CRi) and overall survival (OS) as compared with standard "3+7" regimens. We retrospectively analyze outcomes of 765 patients with sAML and AML-MRC aged 60 to 75 years treated with intensive chemotherapy, reported to the PETHEMA registry before CPX-351 became available. The CR/CRi rate was 48%, median OS was 7.6 months (95% confidence interval [CI]: 6.7-8.5) and event-free survival (EFS) 2.7 months (95% CI: 2-3.3), without differences between intensive chemotherapy regimens and AML type. Multivariate analyses identified age ≥70 years, Eastern Cooperative Oncology Group performance status ≥1 as independent adverse prognostic factors for CR/CRi and OS, while favorable/intermediate cytogenetic risk and NPM1 were favorable prognostic factors. Patients receiving allogeneic stem cell transplant (HSCT), autologous HSCT, and those who completed more consolidation cycles showed improved OS. This large study suggests that classical intensive chemotherapy could lead to similar CR/CRi rates with slightly shorter median OS than CPX-351.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Intervalo Livre de Doença , Citarabina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Indução de Remissão
3.
Front Microbiol ; 14: 1130695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138636

RESUMO

The multiple symbiotic partnerships between closely related species of the haptophyte algae Braarudosphaera bigelowii and the nitrogen-fixing cyanobacteria Candidatus Atelocyanobacterium thalassa (UCYN-A) contribute importantly to the nitrogen and carbon cycles in vast areas of the ocean. The diversity of the eukaryotic 18S rDNA phylogenetic gene marker has helped to identify some of these symbiotic haptophyte species, yet we still lack a genetic marker to assess its diversity at a finer scale. One of such genes is the ammonium transporter (amt) gene, which encodes the protein that might be involved in the uptake of ammonium from UCYN-A in these symbiotic haptophytes. Here, we designed three specific PCR primer sets targeting the amt gene of the haptophyte species (A1-Host) symbiotic with the open ocean UCYN-A1 sublineage, and tested them in samples collected from open ocean and near-shore environments. Regardless of the primer pair used at Station ALOHA, which is where UCYN-A1 is the pre-dominant UCYN-A sublineage, the most abundant amt amplicon sequence variant (ASV) was taxonomically classified as A1-Host. In addition, two out of the three PCR primer sets revealed the existence of closely-related divergent haptophyte amt ASVs (>95% nucleotide identity). These divergent amt ASVs had higher relative abundances than the haptophyte typically associated with UCYN-A1 in the Bering Sea, or co-occurred with the previously identified A1-Host in the Coral Sea, suggesting the presence of new diversity of closely-related A1-Hosts in polar and temperate waters. Therefore, our study reveals an overlooked diversity of haptophytes species with distinct biogeographic distributions partnering with UCYN-A, and provides new primers that will help to gain new knowledge of the UCYN-A/haptophyte symbiosis.

4.
Microb Ecol ; 86(3): 2161-2172, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37148309

RESUMO

Studies based on protein-coding genes are essential to describe the diversity within bacterial functional groups. In the case of aerobic anoxygenic phototrophic (AAP) bacteria, the pufM gene has been established as the genetic marker for this particular functional group, although available primers are known to have amplification biases. We review here the existing primers for pufM gene amplification, design new ones, and evaluate their phylogenetic coverage. We then use samples from contrasting marine environments to evaluate their performance. By comparing the taxonomic composition of communities retrieved with metagenomics and with different amplicon approaches, we show that the commonly used PCR primers are biased towards the Gammaproteobacteria phylum and some Alphaproteobacteria clades. The metagenomic approach, as well as the use of other combinations of the existing and newly designed primers, show that these groups are in fact less abundant than previously observed, and that a great proportion of pufM sequences are affiliated to uncultured representatives, particularly in the open ocean. Altogether, the framework developed here becomes a better alternative for future studies based on the pufM gene and, additionally, serves as a reference for primer evaluation of other functional genes.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Filogenia , Metagenômica , Proteínas de Bactérias/genética , Alphaproteobacteria/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108811

RESUMO

In spinal muscular atrophy (SMA), mutations in or loss of the Survival Motor Neuron 1 (SMN1) gene reduce full-length SMN protein levels, which leads to the degeneration of a percentage of motor neurons. In mouse models of SMA, the development and maintenance of spinal motor neurons and the neuromuscular junction (NMJ) function are altered. Since nifedipine is known to be neuroprotective and increases neurotransmission in nerve terminals, we investigated its effects on cultured spinal cord motor neurons and motor nerve terminals of control and SMA mice. We found that application of nifedipine increased the frequency of spontaneous Ca2+ transients, growth cone size, cluster-like formations of Cav2.2 channels, and it normalized axon extension in SMA neurons in culture. At the NMJ, nifedipine significantly increased evoked and spontaneous release at low-frequency stimulation in both genotypes. High-strength stimulation revealed that nifedipine increased the size of the readily releasable pool (RRP) of vesicles in control but not SMA mice. These findings provide experimental evidence about the ability of nifedipine to prevent the appearance of developmental defects in SMA embryonic motor neurons in culture and reveal to which extent nifedipine could still increase neurotransmission at the NMJ in SMA mice under different functional demands.


Assuntos
Atrofia Muscular Espinal , Nifedipino , Animais , Camundongos , Diferenciação Celular , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Nifedipino/farmacologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transmissão Sináptica
6.
mBio ; 14(3): e0342522, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052490

RESUMO

Low temperature limits the growth and the distribution of the key oceanic primary producer Prochlorococcus, which does not proliferate above a latitude of ca. 40°. Yet, the molecular basis of thermal acclimation in this cyanobacterium remains unexplored. We analyzed the transcriptional response of the Prochlorococcus marinus strain MIT9301 in long-term acclimations and in natural Prochlorococcus populations along a temperature range enabling its growth (17 to 30°C). MIT9301 upregulated mechanisms of the global stress response at the temperature minimum (17°C) but maintained the expression levels of genes involved in essential metabolic pathways (e.g., ATP synthesis and carbon fixation) along the whole thermal niche. Notably, the declining growth of MIT9301 from the optimum to the minimum temperature was coincident with a transcriptional suppression of the photosynthetic apparatus and a dampening of its circadian expression patterns, indicating a loss in their regulatory capacity under cold conditions. Under warm conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which may also induce regulatory imbalances due to stochasticity in gene expression. The daytime transcriptional suppression of photosynthetic genes at low temperature was also observed in metatranscriptomic reads mapping to MIT9301 across the global ocean, implying that this molecular mechanism may be associated with the restricted distribution of Prochlorococcus to temperate zones. IMPORTANCE Prochlorococcus is a major marine primary producer with a global impact on atmospheric CO2 fixation. This cyanobacterium is widely distributed across the temperate ocean, but virtually absent at latitudes above 40° for yet unknown reasons. Temperature has been suggested as a major limiting factor, but the exact mechanisms behind Prochlorococcus thermal growth restriction remain unexplored. This study brings us closer to understanding how Prochlorococcus functions under challenging temperature conditions, by focusing on its transcriptional response after long-term acclimation from its optimum to its thermal thresholds. Our results show that the drop in Prochlorococcus growth rate under cold conditions was paralleled by a transcriptional suppression of the photosynthetic machinery during daytime and a loss in the organism's regulatory capacity to maintain circadian expression patterns. Notably, warm temperature induced a marked shrinkage of the organism's cellular transcript inventory, which may also induce regulatory imbalances in the future functioning of this cyanobacterium.


Assuntos
Prochlorococcus , Prochlorococcus/metabolismo , Oceanos e Mares , Aclimatação , Bactérias , Fotossíntese
7.
Nat Neurosci ; 26(2): 226-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624276

RESUMO

Vaccines against SARS-CoV-2 have been shown to be safe and effective but their protective efficacy against infection in the brain is yet unclear. Here, in the susceptible transgenic K18-hACE2 mouse model of severe coronavirus disease 2019 (COVID-19), we report a spatiotemporal description of SARS-CoV-2 infection and replication through the brain. SARS-CoV-2 brain replication occurs primarily in neurons, leading to neuronal loss, signs of glial activation and vascular damage in mice infected with SARS-CoV-2. One or two doses of a modified vaccinia virus Ankara (MVA) vector expressing the SARS-CoV-2 spike (S) protein (MVA-CoV2-S) conferred full protection against SARS-CoV-2 cerebral infection, preventing virus replication in all areas of the brain and its associated damage. This protection was maintained even after SARS-CoV-2 reinfection. These findings further support the use of MVA-CoV2-S as a promising vaccine candidate against SARS-CoV-2/COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Camundongos Transgênicos , Vacinas contra COVID-19 , Encéfalo
8.
Proc Natl Acad Sci U S A ; 119(39): e2202178119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122208

RESUMO

Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Oxigênio , Respiração , Animais , Hipóxia Celular/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Canais Iônicos , Camundongos , NAD/metabolismo , Oxigênio/metabolismo
9.
Elife ; 112022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587649

RESUMO

The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella, the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of Bloc1s1 mRNA encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Inactivation of the Bloc1s1 gene impaired the ability to assemble BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella-containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Bloc1s1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus murine hepatitis virus also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.


Assuntos
Brucella , Brucelose , Animais , Brucelose/metabolismo , Brucelose/microbiologia , Endorribonucleases/metabolismo , Endossomos/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases
10.
Sci Immunol ; 7(70): eabm8161, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486677

RESUMO

Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.


Assuntos
Epigênese Genética , Succinato Desidrogenase , Proliferação de Células , Cromatina , Complexo II de Transporte de Elétrons/deficiência , Humanos , Inflamação/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Erros Inatos do Metabolismo , Doenças Mitocondriais , Nucleosídeos , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinatos
11.
Blood Adv ; 6(4): 1278-1295, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34794172

RESUMO

Secondary acute myeloid leukemia (sAML) comprises a heterogeneous group of patients and is associated with poor overall survival (OS). We analyze the characteristics, treatment patterns, and outcomes of adult patients with sAML in the Programa Español de Tratamientos en Hematología (PETHEMA) registry. Overall, 6211 (72.9%) were de novo and 2310 (27.1%) had sAML, divided into myelodysplastic syndrome AML (MDS-AML, 44%), MDS/myeloproliferative AML (MDS/MPN-AML, 10%), MPN-AML (11%), therapy-related AML (t-AML, 25%), and antecedent neoplasia without prior chemotherapy/radiotherapy (neo-AML, 9%). Compared with de novo, patients with sAML were older (median age, 69 years), had more Eastern Cooperative Oncology Group ≥2 (35%) or high-risk cytogenetics (40%), less FMS-like tyrosine kinase 3 internal tandem duplication (11%), and nucleophosmin 1 (NPM1) mutations (21%) and received less intensive chemotherapy regimens (38%) (all P < .001). Median OS was higher for de novo than sAML (10.9 vs 5.6 months; P < .001) and shorter in sAML after hematologic disorder (MDS, MDS/MPN, or MPN) compared with t-AML and neo-AML (5.3 vs 6.1 vs 5.7 months, respectively; P = .04). After intensive chemotherapy, median OS was better among patients with de novo and neo-AML (17.2 and 14.6 months, respectively). No OS differences were observed after hypomethylating agents according to type of AML. sAML was an independent adverse prognostic factor for OS. We confirmed high prevalence and adverse features of sAML and established its independent adverse prognostic value. This trial was registered at www.clinicaltrials.gov as #NCT02607059.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Segunda Neoplasia Primária , Adulto , Idoso , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/etiologia , Síndromes Mielodisplásicas/terapia , Segunda Neoplasia Primária/epidemiologia , Segunda Neoplasia Primária/etiologia , Sistema de Registros , Indução de Remissão
12.
Environ Microbiol ; 23(8): 4518-4531, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227720

RESUMO

The symbiotic cyanobacterium UCYN-A is one of the most globally abundant marine dinitrogen (N2 )-fixers, but cultures have not been available and its biology and ecology are poorly understood. We used cultivation-independent approaches to investigate how UCYN-A single-cell N2 fixation rates (NFRs) and nifH gene expression vary as a function of depth and photoperiod. Twelve-hour day/night incubations showed that UCYN-A only fixed N2 during the day. Experiments conducted using in situ arrays showed a light-dependence of NFRs by the UCYN-A symbiosis, with the highest rates in surface waters (5-45 m) and lower rates at depth (≥ 75 m). Analysis of NFRs versus in situ light intensity yielded a light saturation parameter (Ik ) for UCYN-A of 44 µmol quanta m-2  s-1 . This is low compared with other marine diazotrophs, suggesting an ecological advantage for the UCYN-A symbiosis under low-light conditions. In contrast to cell-specific NFRs, nifH gene-specific expression levels did not vary with depth, indicating that light regulates N2 fixation by UCYN-A through processes other than transcription, likely including host-symbiont interactions. These results offer new insights into the physiology of the UCYN-A symbiosis in the subtropical North Pacific Ocean and provide clues to the environmental drivers of its global distributions.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Cianobactérias/genética , Nitrogênio , Oceano Pacífico , Água do Mar , Simbiose
13.
Front Microbiol ; 11: 2059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983043

RESUMO

The temperature-size Rule (TSR) states that there is a negative relationship between ambient temperature and body size. This rule has been independently evaluated for different phases of the life cycle in multicellular eukaryotes, but mostly for the average population in unicellular organisms. We acclimated two model marine cyanobacterial strains (Prochlorococcus marinus MIT9301 and Synechococcus sp. RS9907) to a gradient of temperatures and measured the changes in population age-structure and cell size along their division cycle. Both strains displayed temperature-dependent diel changes in cell size, and as a result, the relationship between temperature and average cell size varied along the day. We computed the mean cell size of new-born cells in order to test the prediction of the TSR on a single-growth stage. Our work reconciles previous inconsistent results when testing the TSR on unicellular organisms, and shows that when a single-growth stage is considered the predicted negative response to temperature is revealed.

14.
Microbiol Immunol ; 64(11): 730-736, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965738

RESUMO

Brucellosis is a major zoonotic disease, and Brucella melitensis is the species most often associated with human infection. Vaccination is the most efficient tool for controlling animal brucellosis, with a consequent decrease of incidence of human infections. Commercially available live attenuated vaccines provide some degree of protection, but retain residual pathogenicity to human and animals. In this study, Brucella ovis ∆abcBA (Bo∆abcBA), a live attenuated candidate vaccine strain, was tested in two formulations (encapsulated with alginate and alginate plus vitelline protein B [VpB]) to immunize mice against experimental challenge with B. melitensis strain 16M. One week after infection, livers and spleens of immunized mice had reduced numbers of the challenge strain B. melitensis 16M when compared with those of nonimmunized mice, with a reduction of approximately 1-log10 of B. melitensis 16M count in the spleens from immunized mice. Moreover, splenocytes stimulated with B. melitensis antigens in vitro secreted IFN-γ when mice had been immunized with Bo∆abcBA encapsulated with alginate plus VpB, but not with alginate alone. Body and liver weights were similar among groups, although spleens from mice immunized with Bo∆abcBA encapsulated with alginate were larger than those immunized with Bo∆abcBA encapsulated with alginate plus VpB or nonimmunized mice. This study demonstrated that two vaccine formulations containing Bo∆abcBA protected mice against experimental challenge with B. melitensis.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Brucella ovis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Animais , Citocinas , Modelos Animais de Doenças , Feminino , Imunização , Fígado/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Vacinação , Vacinas Atenuadas/imunologia
15.
J Phycol ; 56(6): 1521-1533, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32609873

RESUMO

In the last decade, the known biogeography of nitrogen fixation in the ocean has been expanded to colder and nitrogen-rich coastal environments. The symbiotic nitrogen-fixing cyanobacteria group A (UCYN-A) has been revealed as one of the most abundant and widespread nitrogen-fixers, and includes several sublineages that live associated with genetically distinct but closely related prymnesiophyte hosts. The UCYN-A1 sublineage is associated with an open ocean picoplanktonic prymnesiophyte, whereas UCYN-A2 is associated with the coastal nanoplanktonic coccolithophore Braarudosphaera bigelowii, suggesting that different sublineages may be adapted to different environments. Here, we study the diversity of nifH genes present at the Santa Cruz Municipal Wharf in the Monterey Bay (MB), California, and report for the first time the presence of multiple UCYN-A sublineages, unexpectedly dominated by the UCYN-A2 sublineage. Sequence and quantitative PCR data over an 8-year time-series (2011-2018) showed a shift toward increasing UCYN-A2 abundances after 2013, and a marked seasonality for this sublineage which was present during summer-fall months, coinciding with the upwelling-relaxation period in the MB. Increased abundances corresponded to positive temperature anomalies in MB, and we discuss the possibility of a benthic life stage of the associated coccolithophore host to explain the seasonal pattern. The dominance of UCYN-A2 in coastal waters of the MB underscores the need to further explore the habitat preference of the different sublineages in order to provide additional support for the hypothesis that UCYN-A1 and UCYN-A2 sublineages are different ecotypes.


Assuntos
Cianobactérias , Nitrogênio , Baías , California , Cianobactérias/genética , Fixação de Nitrogênio , Água do Mar
16.
Front Neurosci ; 13: 664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297047

RESUMO

Neurogenesis in developing and adult mammalian brain is a tightly regulated process that relies on neural stem cell (NSC) activity. There is increasing evidence that mitochondrial metabolism affects NSC homeostasis and differentiation but the precise role of mitochondrial function in the neurogenic process requires further investigation. Here, we have analyzed how mitochondrial complex I (MCI) dysfunction affects NSC viability, proliferation and differentiation, as well as survival of the neural progeny. We have generated a conditional knockout model (hGFAP-NDUFS2 mice) in which expression of the NDUFS2 protein, essential for MCI function, is suppressed in cells expressing the Cre recombinase under the human glial fibrillary acidic protein promoter, active in mouse radial glial cells (RGCs) and in neural stem cells (NSCs) that reside in adult neurogenic niches. In this model we observed that survival of central NSC population does not appear to be severely affected by MCI dysfunction. However, perinatal brain development was markedly inhibited and Ndufs2 knockout mice died before the tenth postnatal day. In addition, in vitro studies of subventricular zone NSCs showed that active neural progenitors require a functional MCI to produce ATP and to proliferate. In vitro differentiation of neural precursors into neurons and oligodendrocytes was also profoundly affected. These data indicate the need of a correct MCI function and oxidative phosphorylation for glia-like NSC proliferation, differentiation and subsequent oligodendrocyte or neuronal maturation.

17.
mBio ; 10(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602582

RESUMO

Symbiosis between a marine alga and a N2-fixing cyanobacterium (Cyanobacterium UCYN-A) is geographically widespread in the oceans and is important in the marine N cycle. UCYN-A is uncultivated and is an unusual unicellular cyanobacterium because it lacks many metabolic functions, including oxygenic photosynthesis and carbon fixation, which are typical in cyanobacteria. It is now presumed to be an obligate symbiont of haptophytes closely related to Braarudosphaera bigelowii N2-fixing cyanobacteria use different strategies to avoid inhibition of N2 fixation by the oxygen evolved in photosynthesis. Most unicellular cyanobacteria temporally separate the two incompatible activities by fixing N2 only at night, but, surprisingly, UCYN-A appears to fix N2 during the day. The goal of this study was to determine how the unicellular UCYN-A strain coordinates N2 fixation and general metabolism compared to other marine cyanobacteria. We found that UCYN-A has distinct daily cycles of many genes despite the fact that it lacks two of the three circadian clock genes found in most cyanobacteria. We also found that the transcription patterns in UCYN-A are more similar to those in marine cyanobacteria that are capable of aerobic N2 fixation in the light, such as Trichodesmium and heterocyst-forming cyanobacteria, than to those in Crocosphaera or Cyanothece species, which are more closely related to unicellular marine cyanobacteria evolutionarily. Our findings suggest that the symbiotic interaction has resulted in a shift of transcriptional regulation to coordinate UCYN-A metabolism with that of the phototrophic eukaryotic host, thus allowing efficient coupling of N2 fixation (by the cyanobacterium) to the energy obtained from photosynthesis (by the eukaryotic unicellular alga) in the light.IMPORTANCE The symbiotic N2-fixing cyanobacterium UCYN-A, which is closely related to Braarudosphaera bigelowii, and its eukaryotic algal host have been shown to be globally distributed and important in open-ocean N2 fixation. These unique cyanobacteria have reduced metabolic capabilities, even lacking genes for oxygenic photosynthesis and carbon fixation. Cyanobacteria generally use energy from photosynthesis for nitrogen fixation but require mechanisms for avoiding inactivation of the oxygen-sensitive nitrogenase enzyme by ambient oxygen (O2) or the O2 evolved through photosynthesis. This study showed that symbiosis between the N2-fixing cyanobacterium UCYN-A and its eukaryotic algal host has led to adaptation of its daily gene expression pattern in order to enable daytime aerobic N2 fixation, which is likely more energetically efficient than fixing N2 at night, as found in other unicellular marine cyanobacteria.


Assuntos
Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Haptófitas/microbiologia , Haptófitas/fisiologia , Fixação de Nitrogênio , Simbiose , Transcrição Gênica , Relógios Circadianos , Cianobactérias/genética , Luz Solar
18.
Cell Syst ; 7(3): 323-338.e6, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30077634

RESUMO

Intracellular bacterial pathogens secrete a repertoire of effector proteins into host cells that are required to hijack cellular pathways and cause disease. Despite decades of research, the molecular functions of most bacterial effectors remain unclear. To address this gap, we generated quantitative genetic interaction profiles between 36 validated and putative effectors from three evolutionarily divergent human bacterial pathogens and 4,190 yeast deletion strains. Correlating effector-generated profiles with those of yeast mutants, we recapitulated known biology for several effectors with remarkable specificity and predicted previously unknown functions for others. Biochemical and functional validation in human cells revealed a role for an uncharacterized component of the Salmonella SPI-2 translocon, SseC, in regulating maintenance of the Salmonella vacuole through interactions with components of the host retromer complex. These results exhibit the power of genetic interaction profiling to discover and dissect complex biology at the host-pathogen interface.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/metabolismo , Infecções por Salmonella/genética , Salmonella typhi/fisiologia , Leveduras/genética , Animais , Proteínas de Bactérias/genética , Redes Reguladoras de Genes , Células HeLa , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Microrganismos Geneticamente Modificados , Mutação/genética , Transdução de Sinais
19.
PLoS Genet ; 14(6): e1007407, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879139

RESUMO

Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-breakage cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing the pool of available histones. This protection associates neither with changes in bulk telomere length nor with major changes in the structure of subtelomeric chromatin. We show that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone depletion protects telomeres from fusions by homologous recombination (HR), even though HR is proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. Therefore, HR during pre-senescence not only helps stalled replication forks but also prevents T-TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the histone pool and can occur in the absence of Rad51. Our results further suggest that the Mec1-dependent depletion of histones that occurs during pre-senescence in cells without telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by Rad51-independent HR.


Assuntos
Senescência Celular/genética , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Telômero/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Reparo de DNA por Recombinação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-29732320

RESUMO

Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR) sensor IRE1α (inositol-requiring enzyme 1) and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1) conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Brucella melitensis/patogenicidade , Brucelose/patologia , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Brucelose/microbiologia , Linhagem Celular , Drosophila melanogaster , Endorribonucleases/genética , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 5/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Células RAW 264.7 , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Proteínas de Transporte Vesicular/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA