Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 51(6): 2203-2213, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044399

RESUMO

The reduction of nitrogen oxyanions is critical for the remediation of eutrophication caused by anthropogenic perturbations to the natural nitrogen cycle. There are many approaches to nitrogen oxyanion reduction, and here we report our advances in reductive deoxygenation using pre-reduced N-heterocycles. We show examples of nitrogen oxyanion reduction using Cr, Fe, Co, Ni, and Zn, and we evaluate the role of metal choice, number of coordinated oxyanions, and ancillary ligands on the reductive transformations. We report the experimental challenges faced and provide an outlook on new directions to repurpose nitrogen oxyanions into value-added products.

2.
Inorg Chem ; 60(22): 17241-17248, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34705459

RESUMO

There has been an increasing interest in chemistry involving nitrogen oxyanions, largely due to the environmental hazards associated with increased concentrations of these anions leading to eutrophication and aquatic "dead zones". Herein, we report the synthesis and characterization of a suite of MNOx complexes (M = Co, Zn: x = 2, 3). Reductive deoxygenation of cobalt bis(nitrite) complexes with bis(boryl)pyrazine is faster for cobalt than previously reported nickel, and pendant O-bound nitrito ligand is still readily deoxygenated, despite potential implication of an isonitrosyl primary product. Deoxygenation of zinc oxyanion complexes is also facile, despite zinc being unable to stabilize a nitrosyl ligand, with liberation of nitric oxide and nitrous oxide, indicating N-N bond formation. X-ray photoelectron spectroscopy is effective for discriminating the types of nitrogen in these molecules. ESI mass spectrometry of a suite of M(NOx)y (x = 2, 3 and y = 1, 2) shows that the primary form of ionization is loss of an oxyanion ligand, which can be alleviated via the addition of tetrabutylammonium (TBA) as a nonintuitive cation pair for the neutral oxyanion complexes. We have shown these complexes to be subject to deoxygenation, and there is evidence for nitrogen oxyanion reduction in several cases in the ESI plume. The attractive force between cation and neutral is explored experimentally and computationally and attributed to hydrogen bonding of the nitrogen oxyanion ligands with ammonium α-CH2 protons. One example of ESI-induced reductive dimerization is mimicked by bulk solution synthesis, and that product is characterized by X-ray diffraction to contain two Co(NO)2+ groups linked by a highly conjugated diazapolyene.

3.
Chem Sci ; 12(31): 10664-10672, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447560

RESUMO

The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni-Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N-N bond formation in the course of the reaction. Isotopic labelling studies establish that the N-N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N-N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3 -, NO2 -, and OTf-) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO- bridging ligand.

4.
Chem Commun (Camb) ; 57(22): 2780-2783, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33598673

RESUMO

A bidentate pyrazolylpyridine ligand (HL) was installed on divalent nickel to give [(HL)2Ni(NO3)]NO3. This compound reacts with a bis-silylated heterocycle, 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (TMS2Pz) to simultaneously reduce one of the nitrate ligands and deprotonate one of the HL ligands, giving octahedral (HL)(L-)Ni(NO3). The mononitrate species formed is then further reacted with TMS2Pz to doubly deoxygenate nitrate and form [(L-)Ni(NO)]2, dimeric via bridging pyrazolate with bent nitrosyl ligands, representing a two-electron reduction of coordinated nitrate. Independent synthesis of a dimeric species [(L-)Ni(Br)]2 is reported and effectively assembles two metals with better atom economy.

5.
Dalton Trans ; 50(6): 2149-2157, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33491695

RESUMO

A density functional theory exploration studies a range of ancillary coordinated ligands accompanying nitrogen oxyanions with the goal of promoting back donation towards varied nitrogen oxidation states. Evaluation of a suite of Ru and Rh metal complexes reveals minimum back donation to the κ1-nitrogen oxyanion ligand, even upon one-electron reduction. This reveals some surprising consequences of reduction, including redox activity at pyridine and nitrogen oxyanion dissociation. Bidentate nitrate was therefore considered, where ancillary ligands enforce geometries that maximize M-NOx orbital overlap. This strategy is successful and leads to full electron transfer in several cases to form a pyramidal radical NO32- ligand. The impact of ancillary ligand on degree of nitrate reduction is probed by comparing the powerful o-donor tris-carbene borate (TCB) to a milder donor, tris-pyrazolyl borate (Tp). This reveals that with the milder Tp donor, nitrate reduction is only seen upon addition of a Lewis base. Protonation of neutral and anionic (TCB)Ru(κ2-NO3) at both terminal and internal oxygens reveals exergonic N-O bond cleavage for the reduced species, with one electron coming from Ru, yielding a RuIII hydroxide product. Comparison of H+ to Na+ electrophile shows weaker progress towards N-O bond scission. Finally, calculations on (TCB)Fe(κ2-NO3) and [(TCB)Fe(κ2-NO3)]- show that electron transfer to nitrate is possible even with an earth abundant 3d metal.

6.
Dalton Trans ; 49(23): 7891-7896, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32478346

RESUMO

Deoxygenation of nitrite oxygen with divalent cobalt was achieved using (PNNH)CoCl2, carrying a pyridyl pincer ligand with one P(t-Bu)2 arm and one pyrazole arm. Reaction of (PNNH)CoCl2 with NaNO2 at a 2 : 5 mole ratio promptly forms equimolar (PNNH)Co(NO2)3 and (PNN)Co(NO2)(NO), {CoNO}8 with the lost ligand proton combined with removed oxo as hydroxide. These two CoIII products are characterized, showing a bent CoNO unit as the fate of the reduced nitrogen. DFT calculations are consistent with two one-electron CoII reductants binding to one NO2- bridge, then proton transfer being needed for facile N/O bond scission. A species detected by low temperature execution of this reaction contains cobalt in two oxidation states with an N,O bridging nitro group and pincer ligands that have been deprotonated, showing the active participation of the proton responsive ligand.

7.
Chemistry ; 26(61): 13915-13926, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32428366

RESUMO

Reduction of the bis-pyrazolyl pyridine complex [CrL]2 with 4 KC8 , followed by addition of one azobenzene (overall mole ratio 1:4:1), PhNNPh, transfers reducing equivalents to three azobenzenes, to form [K3 Cr(PhNNPh)3 ]. This has three κ2 PhNNPh2- ligands and K+ bound to nitrogen atoms of azobenzene. When the stoichiometry is modified to 1:4:3, the product is changed to [K2 CrL(PhNNPh)2 ], which has C2 symmetry except for the intimate ion pairing of two K+ ions to reduced azobenzene nitrogen atoms, and to pyrazolate and phenyl rings. The origin of the observed delivery of reducing equivalents to several, not to a single N=N bond, is traced to the resistance of the one-electron-reduced substrate to receiving a second electron, and is thus a general phenomenon. [CrL]2 alone is shown to be a two-electron reductant towards benzo[c]cinnoline (BCC) resulting in a product of formula [Cr2 L2 (BCC)], in which the reducing equivalents originate purely from CrII . An analogous study of the reaction of [CrL]2 with azobenzene yields [Cr2 L2 (PhNNPh)(THF)], an adduct in which one THF has displaced one of four hydrazide nitrogen/Cr bonds. Together these illustrate different modes for the Cr2 L2 unit to bind and reduce the N=N bond. Collectively, these results show that two divalent Cr, without added K0 , have the ability to reduce the N=N bond. Further KC8 reduction of preformed Cr2 L2 (RNNR) inevitably gives products in which K+ stabilizes the charge in the increasingly electron-rich nitrogen atoms, in a phenomenon which mimics proton coupled electron transfer: K+ performs the role of H+ . A least-squares fit of the two singly reduced DFT structures shows that the only major change is a re-orientation of one of the two phenyl rings in order to avoid repulsion with potassium but to still allow interaction of that phenyl π system with K+ . This shows both the impact of K+ , being modest to nitrogen/chromium interactions, but nevertheless accommodating some π donation of phenyl to potassium. Finally, delivering increasing equivalents of KC8 leads to complete cleavage of the N=N bond, and both N bind to three CrII . The varied impacts of the K+ electrophile on NN multiple bond reduction is discussed.

8.
Chem Sci ; 10(2): 475-479, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30746094

RESUMO

1,4-Bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene is an effective silyl transfer reagent towards the oxygen of nitrate coordinated to Cr(iii) in a pincer complex. Two nitrate oxygens are removed to give the 17 valence electron octahedral complex (H2L)Cr(NO3)2(NO). This is shown by a variety of spectroscopic methods, together with DFT, to be a Cr(i) complex with a linear CrNO unit. This work also identifies future applications of this reductive silylation process.

9.
Chemistry ; 25(21): 5565-5573, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746807

RESUMO

Metal-ligand complexation at surfaces utilizing redox-active ligands has been demonstrated to produce uniform single-site metals centers in regular coordination networks. Two key design considerations are the electron storage capacity of the ligand and the metal-coordinating pockets on the ligand. In an effort to move toward greater complexity in the systems, particularly dinuclear metal centers, we designed and synthesized tetraethyltetra-aza-anthraquinone, TAAQ, which has superior electron storage capabilities and four ligating pockets in a diverging geometry. Cyclic voltammetry studies of the free ligand demonstrate its ability to undergo up to a four-electron reduction. Solution-based studies with an analogous ligand, diethyldi-aza-anthraquinone, demonstrate these redox capabilities in a molecular environment. Surface studies conducted on the Au(111) surface demonstrate TAAQ's ability to complex with Fe. This complexation can be observed at different stoichiometric ratios of Fe:TAAQ as Fe 2p core level shifts in X-ray photoelectron spectroscopy. Scanning tunneling microscopy experiments confirmed the formation of metal-organic coordination structures. The striking feature of these structures is their irregularity, which indicates the presence of multiple local binding motifs. Density functional theory calculations confirm several energetically accessible Fe:TAAQ isomers, which accounts for the non-uniformity of the chains.

10.
Dalton Trans ; 47(17): 5938-5942, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29658560

RESUMO

Tetrazines react with OCP-1 through a reverse electron demand Diels-Alder process to produce 3,6-disubstituted-1,2,4-diazaphosphinin-5-olates. DFT calculations reveal that both Diels-Alder and subsequent aromatization barriers are low for both EWG and ED tetrazine substituents. The structure of the solid sodium salt shows the interaction of Na+ with aryloxide and also both nitrogens of a neighboring anion, leading to coordination polymer character. 1,2,4-Diazaphosphinin-5-olates react as nucleophiles towards MeI and R3SiCl, respectively, and were installed on the (Ph3P)2Ru(CO)H fragment to investigate their properties as ligands.

11.
Inorg Chem ; 56(16): 9505-9514, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28763211

RESUMO

The synthesis of bis(N1-phenyl-5-hydroxypyrazol-3-yl)pyridines ("L") is described, and these are silylated to achieve analogues ("Si2L") without the variable of the hydroxyl proton mobility. One hydroxyl example is characterized in its bis-pincer iron(II) complex, which shows every OH proton involved in hydrogen bonding. The steric bulk of the silylated N-phenyl-substituted ligands allows the synthesis and characterization of paramagnetic (Si2L)FeCl2 complexes, and one of these is reduced, under CO, to give the diamagnetic (Si2L)Fe(CO)2 species. Structural comparison and density functional theory calculations of the dichloride and dicarbonyl species show that much, but not all, of the reduction occurs at both the ligand pyridine and pyrazole rings, and thus this ligand type is more resistant to reduction than the simpler bis(iminopyridines). The OSiR3 substituent offers a useful diagnostic of reduction at pyrazole via the degree of π-donation to pyrazole by the oxygen lone pairs, and the stereoelectronic features of the NPh moiety are analyzed. The X-ray photoelectron spectroscopy binding energies of both iron and nitrogen are analyzed to show details of the locus of reduction.

12.
Dalton Trans ; 45(24): 9794-804, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27073074

RESUMO

In this paper, we report the synthesis and reactivity of a rare mononuclear chromium(ii) bis(alkoxide) complex, Cr(OR')2(THF)2, that is supported by a new bulky alkoxide ligand (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide). The complex is prepared by protonolysis of square-planar Cr(N(SiMe3)2)2(THF)2 with HOR'. X-ray structure determination disclosed that Cr(OR')2(THF)2 features a distorted seesaw geometry, in contrast to nearly all other tetra-coordinate Cr(ii) complexes, which are square-planar. The reactivity of Cr(OR')2(THF)2 with aldehydes, ketones, and carbon dioxide was investigated. Treatment of Cr(OR')2(THF)2 with two equivalents of aromatic aldehydes ArCHO (ArCHO = benzaldehyde, 4-anisaldehyde, 4-trifluorbenzaldehyde, and 2,4,6-trimethylbenzaldehyde) leads cleanly to the formation of Cr(iv) diolate complexes Cr(OR')2(O2C2H2Ar2) that were characterized by UV-vis and IR spectroscopies and elemental analysis; the representative complex Cr(OR')2(O2C2H2Ph2) was characterized by X-ray crystallography. In contrast, no reductive coupling was observed for ketones: treatment of Cr(OR')2(THF)2 with one or two equivalents of benzophenone forms invariably a single ketone adduct Cr(OR')2(OCPh2) which does not react further. QM/MM calculations suggest the steric demands prevent ketone coupling, and demonstrate that a mononuclear Cr(iii) bis-aldehyde complex with partially reduced aldehydes is sufficient for C-C bond formation. The reaction of Cr(OR')2(THF)2 with CO2 leads to the insertion of CO2 into a Cr-OR' bond, followed by complex rearrangement to form a diamagnetic dinuclear paddlewheel complex Cr2(O2COR')4(THF)2, that was characterized by NMR, UV-vis, and IR spectroscopy, and X-ray crystallography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA