RESUMO
Glycogen synthase kinase 3 (GSK-3) is involved in different diseases, such as manic-depressive illness, Alzheimer's disease and cancer. Studies have shown that insulin inhibits GSK-3 to keep glycogen synthase active. Inhibiting GSK-3 may have an indirect pro-insulin effect by favouring glycogen synthesis. Therefore, the development of GSK-3 inhibitors can be a useful alternative for the treatment of type II diabetes. Aminopyrimidine derivatives already proved to be interesting GSK-3 inhibitors. In the current study, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) have been performed on a series of 122 aminopyrimidine derivatives in order to generate a robust model for the rational design of new compounds with promising antidiabetic activity. The q2 values obtained for the best CoMFA and CoMSIA models have been 0.563 and 0.598, respectively. In addition, the r2 values have been 0.823 and 0.925 for CoMFA and CoMSIA, respectively. The models were statistically validated, and from the contour maps analysis, a proposal of 10 new compounds has been generated, with predicted pIC50 higher than 9. The final contribution of our work is that: (a) we provide an extensive structure-activity relationship for GSK-3 inhibitory pyrimidines; and (b) these models may speed up the discovery of GSK-3 inhibitors based on the aminopyrimidine scaffold. Finally, we carried out docking and molecular dynamics studies of the two best candidates, which were shown to establish halogen-bond interactions with the enzyme.Communicated by Ramaswamy H. Sarma.
Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Quinase 3 da Glicogênio Sintase , Ligação Proteica , Pirimidinas/farmacologia , Pirimidinas/químicaRESUMO
Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs. In this review we describe the relationship of brassinosteroids with cancer with focus on the last decade, the mechanisms of cytotoxic activity described to date, and a structure-activity relationship based on the available information.
Assuntos
Neoplasias , Esteroides Heterocíclicos , Humanos , Brassinosteroides/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Esteroides Heterocíclicos/farmacologiaRESUMO
We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 µM for BTK) and 5b (IC50 = 0.38 µM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.
RESUMO
A new series of twenty-two C-5 substituted N-arylsulfonylindoles was prepared with the aim of exploring the influence of C-5 substitution on 5-HT6 receptor affinity. Eleven compounds showed moderate to high affinity at the receptor (Ki = 58-403 nM), with compound 4d being identified as the most potent ligand. However, regarding C-5 substitution, both methoxy and fluorine were detrimental for receptor affinity compared to our previously published unsubstituted compounds. In order to shed light on these observations, we performed docking and molecular dynamics simulations with the most potent compounds of each series (4d and 4l) and PUC-10, a highly active ligand previously reported by our group. The comparison brings about deeper insight about the influence of the C-5 substitution on the binding mode of the ligands, suggesting that these replacements are detrimental to the affinity due to precluding a ligand from reaching deeper inside the binding site. Additionally, CoMFA/CoMSIA studies were performed to systematize the information of the main structural and physicochemical characteristics of the ligands, which are responsible for their biological activity. The CoMFA and CoMSIA models presented high values of q2 (0.653; 0.692) and r2 (0.879; 0.970), respectively. Although the biological activity of the ligands can be explained in terms of the steric and electronic properties, it depends mainly on the electronic nature.
RESUMO
A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 ± 0.82 nM, and 13c, Ki = 6.85 ± 0.19 nM, showed the highest potencies. The affinities for D2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D2 receptor in the nanomolar range (7n: Ki = 307 ± 6 nM and 7m: Ki = 593 ± 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D2 receptor (D2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q2 = 0.625, 0.523 for CoMFA and CoMSIA and r2ncv = 0.967, 0.959 for CoMFA and CoMSIA, respectively).
Assuntos
Bioensaio/métodos , Receptores de Dopamina D2/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Receptores de Dopamina D2/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Relação Estrutura-AtividadeRESUMO
1,4-Naphthoquinone derivatives have been widely documented with regard to their biological properties, and particularly their anticancer activities. In the 9,10-anthraquinone family, aza-annulation involving one of the carbonyl oxygen atoms has afforded more potent, possibly less toxic analogues. We recently carried out different modifications on the naphthoquinone skeleton to generate 3-chloro-2-amino- and 3-chloro-2-(N-acetamido)-1,4-naphthoquinone and 3,4-dihydrobenzo[f]quinoxalin-6(2H)-one derivatives. These three series of compounds were now tested against normal human fibroblasts and six human cancer cell lines. Some of the dihydrobenzoquinoxalinone derivatives were not only more potent than their 1,4-naphthoquinone counterparts, but also exhibited 10- to 14-fold selectivity between bladder carcinoma and normal cells and were equipotent with the non-selective reference drug used (etoposide). The fusion of an additional azaheterocycle to the 1,4-naphthoquinone nucleus modulates both the activity, selectivity and mechanism of action of the compounds. The electrochemical properties of selected compounds were evaluated in an attempt to correlate them with cytotoxic activity and mechanism of action. Finally, 3D-QSAR CoMFA and CoMSIA models were built on the AGS, J82, and HL-60 cell lines. The best models had values of r2predâ¯=â¯0.815; 0.823 and 0.925. The main structural relationships found, suggest that acetylation and alkylation of the amino group with large groups would be beneficial for cytotoxic activity.