Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Gut ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754953

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.

2.
J Exp Clin Cancer Res ; 43(1): 33, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281027

RESUMO

BACKGROUND: Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking. METHODS: The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action. RESULTS: We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration. CONCLUSIONS: Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.


Assuntos
Neoplasias Pancreáticas , Rutênio , Humanos , Fosforilação Oxidativa , Rutênio/farmacologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo
3.
Front Mol Neurosci ; 16: 1078634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008782

RESUMO

Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments.

4.
Cell Death Differ ; 30(1): 37-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35869285

RESUMO

Despite being frequently observed in cancer cells, chromosomal instability (CIN) and its immediate consequence, aneuploidy, trigger adverse effects on cellular homeostasis that need to be overcome by anti-stress mechanisms. As such, these safeguard responses represent a tumor-specific Achilles heel, since CIN and aneuploidy are rarely observed in normal cells. Recent data have revealed that epitranscriptomic marks catalyzed by RNA-modifying enzymes change under various stress insults. However, whether aneuploidy is associated with such RNA modifying pathways remains to be determined. Through an in silico search for aneuploidy biomarkers in cancer cells, we found TRMT61B, a mitochondrial RNA methyltransferase enzyme, to be associated with high levels of aneuploidy. Accordingly, TRMT61B protein levels are increased in tumor cell lines with an imbalanced karyotype as well as in different tumor types when compared to control tissues. Interestingly, while TRMT61B depletion induces senescence in melanoma cell lines with low levels of aneuploidy, it leads to apoptosis in cells with high levels. The therapeutic potential of these results was further validated by targeting TRMT61B in transwell and xenografts assays. We show that TRM61B depletion reduces the expression of several mitochondrial encoded proteins and limits mitochondrial function. Taken together, these results identify a new biomarker of aneuploidy in cancer cells that could potentially be used to selectively target highly aneuploid tumors.


Assuntos
Metiltransferases , Neoplasias , Humanos , RNA Mitocondrial , Metiltransferases/genética , Aneuploidia , Instabilidade Cromossômica , RNA , Biomarcadores , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362381

RESUMO

Ruthenium(II) arene complexes exhibit promising chemotherapeutic properties. In this study, the effect of the counter anion in Ru(II) complexes was evaluated by analyzing the biological effect of two Ru(II) p-cymene derivatives with the 1,10-phenanthroline-5,6-dione ligand of general-formula [(η6-arene)Ru(L)Cl][X] X = CF3SO3 (JHOR10) and PF6 (JHOR11). The biological activity of JHOR10 and JHOR11 was examined in the ovarian carcinoma cell line A2780, colorectal carcinoma cell line HCT116, doxorubicin-resistant HCT116 (HCT116-Dox) and in normal human dermal fibroblasts. Both complexes JHOR10 and JHOR11 displayed an antiproliferative effect on A2780 and HCT116 cell lines, and low cytotoxicity in fibroblasts. Interestingly, JHOR11 also showed antiproliferative activity in the HCT116-Dox cancer cell line, while JHOR10 was inactive. Studies in A2780 cells showed that JHOR11 induced the production of reactive oxygen species (ROS) that trigger autophagy and cellular senescence, but no apoptosis induction. Further analysis showed that JHOR11 presented no tumorigenicity, with no effect in the cellular mobility, as evaluated by thye wound scratch assay, and no anti- or pro-angiogenic effect, as evaluated by the ex-ovo chorioallantoic membrane (CAM) assay. Importantly, JHOR11 presented no toxicity in chicken and zebrafish embryos and reduced in vivo the proliferation of HCT116 injected into zebrafish embryos. These results show that these are suitable complexes for clinical applications with improved tumor cell cytotoxicity and low toxicity, and that counter-anion alteration might be a viable clinical strategy for improving chemotherapy outcomes in multidrug-resistant (MDR) tumors.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Rutênio , Animais , Humanos , Feminino , Rutênio/farmacologia , Rutênio/uso terapêutico , Peixe-Zebra , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Complexos de Coordenação/farmacologia , Proliferação de Células
6.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818835

RESUMO

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Assuntos
Antineoplásicos , Melanoma , Trifosfato de Adenosina , Animais , Antineoplásicos/farmacologia , Cálcio , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Mutação , Octopodiformes/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , RNA Mensageiro , Espécies Reativas de Oxigênio , Taquicininas/genética , Taquicininas/uso terapêutico , Peixe-Zebra/genética
7.
J Exp Clin Cancer Res ; 40(1): 382, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857016

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. METHODS: SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. RESULTS: SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, Δ133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. CONCLUSION: SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Animais , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Peixe-Zebra
8.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577006

RESUMO

Cisplatin and its derivatives are commonly used in chemotherapeutic treatments of cancer, even though they suffer from many toxic side effects. The problems that emerge from the use of these metal compounds led to the search for new complexes capable to overcome the toxic side effects. Here, we report the evaluation of the antiproliferative activity of Fe(II) cyclopentadienyl complexes bearing n-heterocyclic carbene ligands in tumour cells and their in vivo toxicological profile. The in vitro antiproliferative assays demonstrated that complex Fe1 displays the highest cytotoxic activity both in human colorectal carcinoma cells (HCT116) and ovarian carcinoma cells (A2780) with IC50 values in the low micromolar range. The antiproliferative effect of Fe1 was even higher than cisplatin. Interestingly, Fe1 showed low in vivo toxicity, and in vivo analyses of Fe1 and Fe2 compounds using colorectal HCT116 zebrafish xenograft showed that both reduce the proliferation of human HCT116 colorectal cancer cells in vivo.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos de Ferro/química , Compostos de Ferro/farmacologia , Metano/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Compostos Heterocíclicos/uso terapêutico , Compostos Heterocíclicos/toxicidade , Humanos , Concentração Inibidora 50 , Compostos de Ferro/uso terapêutico , Compostos de Ferro/toxicidade , Metano/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477746

RESUMO

Published studies show that most of the human cancer xenograft studies in zebrafish embryos have used incubation temperatures in the range of 32-34 °C for 3-6 days post-injection, trying to find a compromise temperature between the zebrafish embryos (28 °C) and the human injected cells (37 °C). While this experimental setup is widely used, a question remains: is possible to overcome the drawbacks caused by a suboptimal temperature for the injected cells? To clarify the effect of temperature and injected cells on the host, in this study, we analyzed the development and health of the last in response to different temperatures in the presence or absence of injected human cancer cells. Comparing different incubation temperatures (28, 34 and 36 °C), we determined morphological abnormalities and developmental effects in injected and non-injected embryos at different time points. Besides this, the expression of selected genes was determined by qPCR to determine temperature affected metabolic processes in the embryos. The results indicate that an incubation temperature of 36 °C during a period of 48 h is suitable for xenotransplantation without morphological or metabolic changes that could be affecting the host or the injected cells, allowing them to proliferate near their optimal temperature.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/imunologia , Temperatura Alta/efeitos adversos , Neoplasias/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra/fisiologia , Animais , Linhagem Celular Tumoral/fisiologia , Linhagem Celular Tumoral/transplante , Proliferação de Células/genética , Embrião não Mamífero/fisiologia , Humanos , Imunidade Inata/genética , Neoplasias/patologia , Especificidade da Espécie
10.
Nat Commun ; 11(1): 5265, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067432

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7-9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Evasão da Resposta Imune , Células-Tronco Neoplásicas/imunologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
11.
Cells ; 9(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867288

RESUMO

The first steps towards establishing xenografts in zebrafish embryos were performed by Lee et al., 2005 and Haldi et al., 2006, paving the way for studying human cancers using this animal species. Since then, the xenograft technique has been improved in different ways, ranging from optimizing the best temperature for xenografted embryo incubation, testing different sites for injection of human tumor cells, and even developing tools to study how the host interacts with the injected cells. Nonetheless, a standard protocol for performing xenografts has not been adopted across laboratories, and further research on the temperature, microenvironment of the tumor or the cell-host interactions inside of the embryo during xenografting is still needed. As a consequence, current non-uniform conditions could be affecting experimental results in terms of cell proliferation, invasion, or metastasis; or even overestimating the effects of some chemotherapeutic drugs on xenografted cells. In this review, we highlight and raise awareness regarding the different aspects of xenografting that need to be improved in order to mimic, in a more efficient way, the human tumor microenvironment, resulting in more robust and accurate in vivo results.


Assuntos
Neoplasias/diagnóstico , Transplante Heterólogo/métodos , Animais , Modelos Animais de Doenças , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
12.
Cells ; 9(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423054

RESUMO

BACKGROUND: Recent studies showed a relevant role of hematogenous spread in ovarian cancer and the interest of circulating tumor cells (CTCs) monitoring as a prognosis marker. The aim of the present study was the characterization of CTCs from ovarian cancer patients, paying special attention to cell plasticity characteristics to better understand the biology of these cells. METHODS: CTCs isolation was carried out in 38 patients with advanced high-grade serous ovarian cancer using in parallel CellSearch and an alternative EpCAM-based immunoisolation followed by RT-qPCR analysis to characterize these cells. RESULTS: Epithelial CTCs were found in 21% of patients, being their presence higher in patients with extraperitoneal metastasis. Importantly, this population was characterized by the expression of epithelial markers as MUC1 and CK19, but also by genes associated with mesenchymal and more malignant features as TIMP1, CXCR4 and the stem markers CD24 and CD44. In addition, we evidenced the relevance of TIMP1 expression to promote tumor proliferation, suggesting its interest as a therapeutic target. CONCLUSIONS: Overall, we evidenced the utility of the molecular characterization of EpCAM+ CTCs from advanced ovarian cancer patients to identify biomarkers with potential applicability for disseminated disease detection and as therapeutic targets such as TIMP1.


Assuntos
Terapia de Alvo Molecular , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Plasticidade Celular , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Peixe-Zebra
13.
J Clin Med ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012729

RESUMO

Traditionally, studies to address the characterization of mechanisms promoting tumor aggressiveness and progression have been focused only on primary tumor analyses, which could provide relevant information but have limitations to really characterize the more aggressive tumor population. To overcome these limitations, circulating tumor cells (CTCs) represent a noninvasive and valuable tool for real-time profiling of disseminated tumor cells. Therefore, the aim of the present study was to explore the value of CTC enumeration and characterization to identify markers associated with the outcome and the aggressiveness of triple-negative breast cancer (TNBC). For that aim, the CTC population from 32 patients diagnosed with TNBC was isolated and characterized. This population showed important cell plasticity in terms of expression of epithelia/mesenchymal and stemness markers, suggesting the relevance of epithelial to mesenchymal transition (EMT) intermediate phenotypes for efficient tumor dissemination. Importantly, the CTC signature demonstrated prognostic value to predict the patients' outcome and pointed to a relevant role of tissue inhibitor of metalloproteinases 1 (TIMP1) and androgen receptor (AR) for TNBC biology. Furthermore, we also analyzed the usefulness of the AR and TIMP1 blockade to target TNBC proliferation and dissemination using in vitro and in vivo zebra fish and mouse models. Overall, the molecular characterization of CTCs from advanced TNBC patients identifies highly specific biomarkers with potential applicability as noninvasive prognostic markers and reinforced the value of TIMP1 and AR as potential therapeutic targets to tackle the most aggressive breast cancer.

14.
J Pathol ; 249(3): 381-394, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31292963

RESUMO

Cancer progression requires cells surrounding tumors be reeducated and activated to support tumor growth. Oncogenic signals from malignant cells directly influence stromal composition and activation, but the factors mediating this communication are still not well understood. We have previously shown that the transcription factor POU class 1 homeobox 1 (POU1F1), also known as Pit-1, induces profound changes on neoplastic cell-autonomous processes favoring metastasis in human breast cancer. Here we describe for the first time Pit-1-mediated paracrine actions on macrophages in the tumor microenvironment by using cell lines in vitro, zebrafish and mouse models in vivo, and samples from human breast cancer patients. Through the release of CXCL12, Pit-1 in tumor cells was found to mediate the recruitment and polarization of macrophages into tumor-associated macrophages (TAMs). In turn, TAMs collaborated with tumor cells to increase tumor growth, angiogenesis, extravasation and metastasis to lung. Our data reveal a new mechanism of cooperation between tumor cells and macrophages favoring metastasis and poor clinical outcome in human breast cancer, which suggests that Pit-1 and CXCL12 should be further studied as potential prognostic and therapeutic indicators. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Neoplasias Pulmonares/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Comunicação Parácrina , Fator de Transcrição Pit-1/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Células MCF-7 , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica , Fenótipo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fator de Transcrição Pit-1/genética , Microambiente Tumoral , Células U937 , Peixe-Zebra/embriologia
15.
Toxicol Mech Methods ; 29(7): 478-487, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31050327

RESUMO

The human cancer cell xenograft in zebrafish embryos has become a very useful preclinical tool in oncology research. While many anticancer drugs have been assayed with this model, few studies regarding the toxicity limits of these drugs for the host have been addressed. Here, we evaluated the acute toxicity of five approved and routinely used human anticancer drugs embracing different mechanism action types: Carboplatin (CarboPt), Irinotecan (IT), Doxorubicin (DOX), Paclitaxel (PT) and Chloroquine (CQ). They were tested in zebrafish embryos using the Fish Embryo Acute Toxicity (FET) test at 0 and 72 hours per fertilization (hpf). Additionally, we compared those results with in vitro toxicity assays and could find notable differences between both models. Our results indicate that the toxicity data of a compound evaluated in vitro and in a FET test at 0 hpf do not guarantee a reliable toxicity determination for performing xenografts in zebrafish, being necessary additional toxicity studies using 72 hpf embryos, the starting point of drug treatment in this kind of preclinical assays.


Assuntos
Antineoplásicos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Animais , Fatores de Tempo , Testes de Toxicidade Aguda
16.
Sci Rep ; 8(1): 11519, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068931

RESUMO

Consistent with their diverse pharmacology, peptides derived from venomous animals have been developed as drugs to treat disorders as diverse as hypertension, diabetes and chronic pain. Melanoma has a poor prognosis due in part to its metastatic capacity, warranting further development of novel targeted therapies. This prompted us to examine the anti-melanoma activity of the spider peptides gomesin (AgGom) and a gomesin-like homolog (HiGom). AgGom and HiGom dose-dependently reduced the viability and proliferation of melanoma cells whereas it had no deleterious effects on non-transformed neonatal foreskin fibroblasts. Concordantly, gomesin-treated melanoma cells showed a reduced G0/G1 cell population. AgGom and HiGom compromised proliferation of melanoma cells via activation of the p53/p21 cell cycle check-point axis and the Hippo signaling cascade, together with attenuation of the MAP kinase pathway. We show that both gomesin peptides exhibit antitumoral activity in melanoma AVATAR-zebrafish xenograft tumors and that HiGom also reduces tumour progression in a melanoma xenograft mouse model. Taken together, our data highlight the potential of gomesin for development as a novel melanoma-targeted therapy.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Melanoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Xenoenxertos , Camundongos , Transplante de Neoplasias , Resultado do Tratamento , Peixe-Zebra
17.
BMC Cancer ; 18(1): 3, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291719

RESUMO

BACKGROUND: Zebrafish (Danio rerio) is a model organism that has emerged as a tool for cancer research, cancer being the second most common cause of death after cardiovascular disease for humans in the developed world. Zebrafish is a useful model for xenotransplantation of human cancer cells and toxicity studies of different chemotherapeutic compounds in vivo. Compared to the murine model, the zebrafish model is faster, can be screened using high-throughput methods and has a lower maintenance cost, making it possible and affordable to create personalized therapies. While several methods for cell proliferation determination based on image acquisition and quantification have been developed, some drawbacks still remain. In the xenotransplantation technique, quantification of cellular proliferation in vivo is critical to standardize the process for future preclinical applications of the model. METHODS: This study improved the conditions of the xenotransplantation technique - quantification of cellular proliferation in vivo was performed through image processing with our ZFtool software and optimization of temperature in order to standardize the process for a future preclinical applications. ZFtool was developed to establish a base threshold that eliminates embryo auto-fluorescence and measures the area of marked cells (GFP) and the intensity of those cells to define a 'proliferation index'. RESULTS: The analysis of tumor cell proliferation at different temperatures (34 °C and 36 °C) in comparison to in vitro cell proliferation provides of a better proliferation rate, achieved as expected at 36°, a maintenance temperature not demonstrated up to now. The mortality of the embryos remained between 5% and 15%. 5- Fluorouracil was tested for 2 days, dissolved in the incubation medium, in order to quantify the reduction of the tumor mass injected. In almost all of the embryos incubated at 36 °C and incubated with 5-Fluorouracil, there was a significant tumor cell reduction compared with the control group. This was not the case at 34 °C. CONCLUSIONS: Our results demonstrate that the proliferation of the injected cells is better at 36 °C and that this temperature is the most suitable for testing chemotherapeutic drugs like the 5-Fluorouracil.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/citologia , Proteínas de Fluorescência Verde/metabolismo , Neoplasias/diagnóstico , Software , Animais , Modelos Animais de Doenças , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Temperatura , Transplante Heterólogo , Células Tumorais Cultivadas , Peixe-Zebra
18.
Oncotarget ; 7(50): 83071-83087, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27825113

RESUMO

The marine environment constitutes an extraordinary resource for the discovery of new therapeutic agents. In the present manuscript we studied the effect of 3 different sponge derived guanidine alkaloids, crambescidine-816, -830, and -800. We show that these compounds strongly inhibit tumor cell proliferation by down-regulating cyclin-dependent kinases 2/6 and cyclins D/A expression while up-regulating the cell cyclin-dependent kinase inhibitors -2A, -2D and -1A. We also show that these guanidine compounds disrupt tumor cell adhesion and cytoskeletal integrity promoting the activation of the intrinsic apoptotic signaling, resulting in loss of mitochondrial membrane potential and concomitant caspase-3 cleavage and activation. The crambescidin 816 anti-tumor effect was fnally assayed in a zebrafish xenotransplantation model confirming its potent antitumor activity against colorectal carcinoma in vivo.Considering these results crambescidins could represent promising natural anticancer agents and therapeutic tools.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Guanidina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Animais , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Guanidina/farmacologia , Células HT29 , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
19.
Zebrafish ; 13(4): 241-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27140317

RESUMO

The zebrafish model can play a role in education because of its suitability for manipulation and attractiveness to students compared to traditional lecture-based instruction. Furthermore, zebrafish offer advantages over other model species. Seeing as fewer and fewer students are entering science degree programs, this project has been developed to encourage scientific vocations among secondary school students. To do so, an aquarium was given to 114 schools so that they could look after adult zebrafish, mate them, and visualize embryo development. For training on more sophisticated techniques, a virtual tool was developed to simulate a real genetics laboratory on a personal computer. Results based on teachers' feedback indicate that the students were fully dedicated to the project and achieved better understanding of genetic concepts and techniques. These results demonstrate the potential of alternative teaching methods for engaging students in science learning.


Assuntos
Ciência/educação , Peixe-Zebra , Adolescente , Animais , Humanos , Instituições Acadêmicas , Espanha , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA