Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 146(2): 245-261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289222

RESUMO

The link between the gut and the brain in Parkinson's disease (PD) pathogenesis is currently a subject of intense research. Indeed, gastrointestinal dysfunction is known as an early symptom in PD and inflammatory bowel disease (IBD) has recently been recognised as a risk factor for PD. The leucine-rich repeat kinase 2 (LRRK2) is a PD- and IBD-related protein with highest expression in immune cells. In this study, we provide evidence for a central role of LRRK2 in gut inflammation and PD. The presence of the gain-of-function G2019S mutation significantly increases the disease phenotype and inflammatory response in a mouse model of experimental colitis based on chronic dextran sulphate sodium (DSS) administration. Bone marrow transplantation of wild-type cells into G2019S knock-in mice fully rescued this exacerbated response, proving the key role of mutant LRRK2 in immune cells in this experimental colitis model. Furthermore, partial pharmacological inhibition of LRRK2 kinase activity also reduced the colitis phenotype and inflammation. Moreover, chronic experimental colitis also induced neuroinflammation and infiltration of peripheral immune cells into the brain of G2019S knock-in mice. Finally, combination of experimental colitis with overexpression of α-synuclein in the substantia nigra aggravated motor deficits and dopaminergic neurodegeneration in G2019S knock-in mice. Taken together, our results link LRRK2 with the immune response in colitis and provide evidence that gut inflammation can impact brain homeostasis and contribute to neurodegeneration in PD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Doença de Parkinson , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Imunidade , Inflamação , Doenças Inflamatórias Intestinais/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos Transgênicos , Mutação/genética , Doença de Parkinson/patologia
2.
Neurotherapeutics ; 18(2): 949-961, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33594532

RESUMO

The development of disease-modifying therapies for Parkinson's disease is a major challenge which would be facilitated by a better understanding of the pathogenesis. Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are key players in Parkinson's disease, but their relationship remains incompletely resolved. Previous studies investigating the effect of LRRK2 on α-synuclein-induced neurotoxicity and neuroinflammation in preclinical Parkinson's disease models have reported conflicting results. Here, we aimed to further explore the functional interaction between α-synuclein and LRRK2 and to evaluate the therapeutic potential of targeting physiological LRRK2 levels. We studied the effects of total LRRK2 protein loss as well as pharmacological LRRK2 kinase inhibition in viral vector-mediated α-synuclein-based Parkinson's disease models developing early- and late-stage neurodegeneration. Surprisingly, total LRRK2 ablation or in-diet treatment with the LRRK2 kinase inhibitor MLi-2 did not significantly modify α-synuclein-induced motor deficits, dopaminergic cell loss, or α-synuclein pathology. Interestingly, we found a significant effect on α-synuclein-induced neuroinflammatory changes in the absence of LRRK2, with a reduced microglial activation and CD4+ and CD8+ T cell infiltration. This observed lack of protection against α-synuclein-induced toxicity should be well considered in light of the ongoing therapeutic development of LRRK2 kinase inhibitors for idiopathic Parkinson's disease. Future studies will be crucial to understand the link between these neuroinflammatory processes and disease progression as well as the role of α-synuclein and LRRK2 in these pathological events.


Assuntos
Indazóis/administração & dosagem , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neuroinflamatórias/enzimologia , Pirimidinas/administração & dosagem , alfa-Sinucleína/toxicidade , Animais , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Long-Evans , Ratos Transgênicos
3.
Front Neurosci ; 14: 376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410948

RESUMO

The multiple hit hypothesis for Parkinson's disease (PD) suggests that an interaction between multiple (genetic and/or environmental) risk factors is needed to trigger the pathology. Leucine-Rich Repeat Kinase 2 (LRRK2) is an interesting protein to study in this context and is the focus of this review. More than 15 years of intensive research have identified several cellular pathways in which LRRK2 is involved, yet its exact physiological role or contribution to PD is not completely understood. Pathogenic mutations in LRRK2 are the most common genetic cause of PD but most likely require additional triggers to develop PD, as suggested by the reduced penetrance of the LRRK2 G2019S mutation. LRRK2 expression is high in immune cells such as monocytes, neutrophils, or dendritic cells, compared to neurons or glial cells and evidence for a role of LRRK2 in the immune system is emerging. This has led to the hypothesis that an inflammatory trigger is needed for pathogenic LRRK2 mutations to induce a PD phenotype. In this review, we will discuss the link between LRRK2 and inflammation and how this could play an active role in PD etiology.

4.
Sci Rep ; 10(1): 4449, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157143

RESUMO

Pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating disease where no treatment exists, involves the compartmentalization of the nuclear protein TDP-43 (TAR DNA-binding protein 43) in the cytoplasm which is promoted by its aberrant phosphorylation and others posttranslational modifications. Recently, it was reported that CK-1δ (protein casein kinase-1δ) is able to phosphorylate TDP-43. Here, the preclinical efficacy of a benzothiazole-based CK-1δ inhibitor IGS-2.7, both in a TDP-43 (A315T) transgenic mouse and in a human cell-based model of ALS, is shown. Treatment with IGS-2.7 produces a significant preservation of motor neurons in the anterior horn at lumbar level, a decrease in both astroglial and microglial reactivity in this area, and in TDP-43 phosphorylation in spinal cord samples. Furthermore, the recovery of TDP-43 homeostasis (phosphorylation and localization) in a human-based cell model from ALS patients after treatment with IGS-2.7 is also reported. Moreover, we have shown a trend to increase in CK-1δ mRNA in spinal cord and significantly in frontal cortex of sALS cases. All these data show for the first time the in vivo modulation of TDP-43 toxicity by CK-1δ inhibition with IGS-2.7, which may explain the benefits in the preservation of spinal motor neurons and point to the relevance of CK-1δ inhibitors in a future disease-modifying treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Caseína Quinase Idelta/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/citologia , Inibidores de Proteínas Quinases/farmacologia , Medula Espinal/citologia , Idoso , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Fosforilação , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA