Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLOS Digit Health ; 2(8): e0000304, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37585430

RESUMO

The Finger Tapping Test (FTT) is a classical neuropsychological test that assesses motor functioning, and recently it has been employed using smartphones. For classical protocols, it has been observed that sex and handedness influence the performance during the test. By assessing the influence of sex and handedness on the test, it is possible to adjust the performance measurements to ensure the validity of test results and avoid sex- and handedness-related bias. The present study aimed to evaluate the influence of sex and handedness on smartphone-based FTT performance. We developed an Android application for the FTT and recruited 40 males and 40 females to carry out three spatial designs on it (protocols I, II, and III). Participants' performance was measured using the global, temporal, and spatial parameters of the FTT. We observed that for the performance in protocol I, handedness had a significant influence on global and temporal variables, while the interaction between handedness and sex had a greater influence on spatial variables. For protocols II and III, we observed that handedness had a significant influence on global, temporal, and spatial variables compared to the other factors. We concluded that the smartphone-based test is partly influenced by handedness and sex, and in clinical implications, these factors should be considered during the evaluation of the smartphone-based FTT.

2.
Sci Rep ; 12(1): 16808, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207392

RESUMO

Tremors are common disorders characterized by an involuntary and relatively rhythmic oscillation that can occur in any part of the body and may be physiological or associated with some pathological condition. It is known that the mass loading can change the power spectral distribution of the tremor. Nowadays, many instruments have been used in the evaluation of tremors with bult-in inertial sensors, such as smartphones and wearables, which can significantly differ in the device mass. The aim of this study was to compare the quantification of hand tremor using Fourier spectral techniques obtained from readings of accelerometers built-in a lightweight handheld device and a commercial smartphone in healthy young subjects. We recruited 28 healthy right-handed subjects with ages ranging from 18 to 40 years. We tested hand tremors at rest and postural conditions using lightweight wearable device (5.7 g) and smartphone (169 g). Comparing both devices at resting tremor, we found with smartphone the power distribution of peak ranging 5 and 12 Hz in both hands. With wearable, the result was similar but less evident. When comparing both devices in postural tremor, there were significant differences in both frequency ranges in peak frequency and peak amplitude in both hands. Our main findings show that in resting condition the hand tremor spectrum had a higher peak amplitude in the 5-12 Hz range when the tremor was recorded with smartphones, and in postural condition there was a significantly (p < 0.05) higher peak power spectrum and peak frequency in the dominant hand tremors recorded with smartphones compared to those obtained with lightweight wearable device. Devices having different masses can alter the features of the hand tremor spectrum and their mutual comparisons can be prejudiced.


Assuntos
Tremor , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Mãos , Humanos , Smartphone , Tremor/complicações , Tremor/diagnóstico , Extremidade Superior , Adulto Jovem
3.
J Pers Med ; 12(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887516

RESUMO

Falls represent a public health issue around the world and prevention is an important part of the politics of many countries. The standard method of evaluating balance is posturography using a force platform, which has high financial costs. Other instruments, such as portable devices and smartphones, have been evaluated as low-cost alternatives to the screening of balance control. Although smartphones and wearables have different sizes, shapes, and weights, they have been systematically validated for static balance control tasks. Different studies have applied different experimental configurations to validate the inertial measurements obtained by these devices. We aim to evaluate the concurrent validity of a smartphone and a portable device for the evaluation of static balance control in the same group of participants. Twenty-six healthy and young subjects comprised the sample. The validity for static balance control evaluation of built-in accelerometers inside portable smartphone and wearable devices was tested considering force platform recordings as a gold standard for comparisons. A linear correlation (r) between the quantitative variables obtained from the inertial sensors and the force platform was used as an indicator of the concurrent validity. Reliability of the measures was calculated using Intraclass correlation in a subsample (n = 14). Smartphones had 11 out of 12 variables with significant moderate to very high correlation (r > 0.5, p < 0.05) with force platform variables in open eyes, closed eyes, and unipedal conditions, while wearable devices had 8 out of 12 variables with moderate to very high correlation (r > 0.5, p < 0.05) with force platform variables under the same task conditions. Significant reliabilities were found in closed eye conditions for smartphones and wearables. The smartphone and wearable devices had concurrent validity for the static balance evaluation and the smartphone had better validity results than the wearables for the static balance evaluation.

4.
PLoS One ; 16(4): e0249467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857169

RESUMO

We investigated the impact of visual impairment on balance control. We measured the center of pressure (COP) between the two feet and plantar surface pressures on each foot in 18 normal-sighted participants and compared their data with measures from 18 legally blind participants, either acquired or congenital. Pressures were measured in open- and closed-eye conditions using a baropodometric resistive plate. In the eyes-open condition, there were no differences between the sighted and legally blind groups in COP displacement. However, participants with visual loss had significantly increased pressures in two metatarsal regions (M1 and M2 zones) of the plantar surface in both viewing conditions (p < 0.05). The differences in pressure measures between the normally sighted and legally blind groups could be attributed mainly to the subgroup of subjects with acquired impairment. Our findings suggest that subjects with visual impairment present increased metatarsal pressures (i.e. forefoot), not yet associated to anterior displacement of COP or impaired balance control.


Assuntos
Pé/fisiologia , Ossos do Metatarso/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural , Pressão , Pessoas com Deficiência Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA