Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124011

RESUMO

Load recognition remains not comprehensively explored in Home Energy Management Systems (HEMSs). There are gaps in current approaches to load recognition, such as enhancing appliance identification and increasing the overall performance of the load-recognition system through more robust models. To address this issue, we propose a novel approach based on the Analysis of Variance (ANOVA) F-test combined with SelectKBest and gradient-boosting machines (GBMs) for load recognition. The proposed approach improves the feature selection and consequently aids inter-class separability. Further, we optimized GBM models, such as the histogram-based gradient-boosting machine (HistGBM), light gradient-boosting machine (LightGBM), and XGBoost (extreme gradient boosting), to create a more reliable load-recognition system. Our findings reveal that the ANOVA-GBM approach achieves greater efficiency in training time, even when compared to Principal Component Analysis (PCA) and a higher number of features. ANOVA-XGBoost is approximately 4.31 times faster than PCA-XGBoost, ANOVA-LightGBM is about 5.15 times faster than PCA-LightGBM, and ANOVA-HistGBM is 2.27 times faster than PCA-HistGBM. The general performance results expose the impact on the overall performance of the load-recognition system. Some of the key results show that the ANOVA-LightGBM pair reached 96.42% accuracy, 96.27% F1, and a Kappa index of 0.9404; the ANOVA-HistGBM combination achieved 96.64% accuracy, 96.48% F1, and a Kappa index of 0.9434; and the ANOVA-XGBoost pair attained 96.75% accuracy, 96.64% F1, and a Kappa index of 0.9452; such findings overcome rival methods from the literature. In addition, the accuracy gain of the proposed approach is prominent when compared straight to its competitors. The higher accuracy gains were 13.09, 13.31, and 13.42 percentage points (pp) for the pairs ANOVA-LightGBM, ANOVA-HistGBM, and ANOVA-XGBoost, respectively. These significant improvements highlight the effectiveness and refinement of the proposed approach.

2.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610484

RESUMO

Efficient energy management in residential environments is a constant challenge, in which Home Energy Management Systems (HEMS) play an essential role in optimizing consumption. Load recognition allows the identification of active appliances, providing robustness to the HEMS. The precise identification of household appliances is an area not completely explored. Gaps like improving classification performance through techniques dedicated to separability between classes and models that achieve enhanced reliability remain open. This work improves several aspects of load recognition in HEMS applications. In this research, we adopt Neighborhood Component Analysis (NCA) to extract relevant characteristics from the data, seeking the separability between classes. We also employ the Regularized Extreme Learning Machine (RELM) to identify household appliances. This pioneering approach achieves performance improvements, presenting higher accuracy and weighted F1-Score values-97.24% and 97.14%, respectively-surpassing state-of-the-art methods and enhanced reliability according to the Kappa index, i.e., 0.9388, outperforming competing classifiers. Such evidence highlights the promising potential of Machine Learning (ML) techniques, specifically NCA and RELM, to contribute to load recognition and energy management in residential environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA