Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836260

RESUMO

In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C K-edge. From the XMCD sum rules an estimated magnetic moment of 0.3 µB/C atom, while a more accurate estimation of 0.49 µB/C atom was obtained by carrying out a PNR measurement at 300 K. The results indicate that the higher magnetic moment in Co is counterbalanced by the larger lattice mismatch between the Co-C (1.6%) and the slightly longer bond length, inducing a magnetic moment in graphene that is similar to that reported in Ni/graphene heterostructures.

2.
Sensors (Basel) ; 16(9)2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27563903

RESUMO

Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies.

3.
Nano Lett ; 16(2): 1250-61, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26756610

RESUMO

Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.


Assuntos
Compostos de Boro/química , Nanoestruturas/química , Compostos de Amônio/química , Compostos de Boro/síntese química , Catálise , Ferro/química , Cinética , Nanoestruturas/ultraestrutura , Nitrogênio/química , Propriedades de Superfície , Difração de Raios X
4.
Nanoscale ; 8(4): 2149-58, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26730836

RESUMO

The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture.

5.
J Am Chem Soc ; 137(45): 14358-66, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26499041

RESUMO

The long-term (>18 months) protection of Ni surfaces against oxidation under atmospheric conditions is demonstrated by coverage with single-layer graphene, formed by chemical vapor deposition. In situ, depth-resolved X-ray photoelectron spectroscopy of various graphene-coated transition metals reveals that a strong graphene-metal interaction is of key importance in achieving this long-term protection. This strong interaction prevents the rapid intercalation of oxidizing species at the graphene-metal interface and thus suppresses oxidation of the substrate surface. Furthermore, the ability of the substrate to locally form a passivating oxide close to defects or damaged regions in the graphene overlayer is critical in plugging these defects and preventing oxidation from proceeding through the bulk of the substrate. We thus provide a clear rationale for understanding the extent to which two-dimensional materials can protect different substrates and highlight the key implications for applications of these materials as barrier layers to prevent oxidation.

6.
Nanoscale ; 7(30): 13135-42, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26176814

RESUMO

Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.

7.
Nano Lett ; 15(3): 1867-75, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25664483

RESUMO

The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 µm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials.

8.
J Am Chem Soc ; 136(39): 13698-708, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25188018

RESUMO

The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to ∼10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA