Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell Chem Biol ; 31(6): 1036-1038, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906107

RESUMO

In this Voices piece, the Cell Chemical Biology editors ask researchers from a range of backgrounds: what are some exciting discoveries in the induced proximity field and the next frontier for therapeutic development?


Assuntos
Descoberta de Drogas , Humanos
2.
Mol Neurodegener ; 19(1): 51, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915105

RESUMO

BACKGROUND: Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS: We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS: Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS: The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.


Assuntos
Tauopatias , Proteínas tau , Animais , Tauopatias/metabolismo , Proteínas tau/metabolismo , Camundongos , Acetilação , Humanos , Imunoterapia/métodos , Modelos Animais de Doenças , Camundongos Transgênicos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Fármacos Neuroprotetores/farmacologia
3.
Nat Struct Mol Biol ; 31(2): 311-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177675

RESUMO

Targeted protein degradation (TPD) by PROTAC (proteolysis-targeting chimera) and molecular glue small molecules is an emerging therapeutic strategy. To expand the roster of E3 ligases that can be utilized for TPD, we describe the discovery and biochemical characterization of small-molecule ligands targeting the E3 ligase KLHDC2. Furthermore, we functionalize these KLHDC2-targeting ligands into KLHDC2-based BET-family and AR PROTAC degraders and demonstrate KLHDC2-dependent target-protein degradation. Additionally, we offer insight into the assembly of the KLHDC2 E3 ligase complex. Using biochemical binding studies, X-ray crystallography and cryo-EM, we show that the KLHDC2 E3 ligase assembles into a dynamic tetramer held together via its own C terminus, and that this assembly can be modulated by substrate and ligand engagement.


Assuntos
Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ligantes
4.
Biol Psychiatry ; 93(1): 71-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372569

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS: To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS: The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS: This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Neurais , Humanos , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fenótipo , Encéfalo/metabolismo , Camundongos Knockout
5.
Mol Ther Nucleic Acids ; 29: 625-642, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36090761

RESUMO

Tau is a microtubule-associated protein (MAPT, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the MAPT locus resulted in the identification of hot spots for activity in the 3' UTR. Further modifications to the LNA design resulted in the generation of ASO-001933, which selectively and potently reduces tau in primary cultures from hTau mice, monkey, and human neurons. ASO-001933 was well tolerated and produced a robust, long-lasting reduction in tau protein in both mouse and cynomolgus monkey brain. In monkey, tau protein reduction was maintained in brain for 20 weeks post injection and corresponded with tau protein reduction in the cerebrospinal fluid (CSF). Our results demonstrate that LNA-ASOs exhibit excellent drug-like properties and sustained efficacy likely translating to infrequent, intrathecal dosing in patients. These data further support the development of LNA-ASOs against tau for the treatment of tauopathies.

6.
Nucleic Acid Ther ; 32(3): 151-162, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166597

RESUMO

Antisense oligonucleotides are a relatively new therapeutic modality and safety evaluation is still a developing area of research. We have observed that some oligonucleotides can produce acute, nonhybridization dependent, neurobehavioral side effects after intracerebroventricular (ICV) dosing in mice. In this study, we use a combination of in vitro, in vivo, and bioinformatics approaches to identify a sequence design algorithm, which can reduce the number of acutely toxic molecules synthesized and tested in mice. We find a cellular assay measuring spontaneous calcium oscillations in neuronal cells can predict the behavioral side effects after ICV dosing, and may provide a mechanistic explanation for these observations. We identify sequence features that are overrepresented or underrepresented among oligonucleotides causing these reductions in calcium oscillations. A weighted linear combination of the five most informative sequence features predicts the outcome of ICV dosing with >80% accuracy. From this, we develop a bioinformatics tool that allows oligonucleotide designs with acceptable acute neurotoxic potential to be identified, thereby reducing the number of toxic molecules entering drug discovery pipelines. The informative sequence features we identified also suggest areas in which to focus future medicinal chemistry efforts.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Oligonucleotídeos Antissenso , Animais , Encéfalo , Camundongos , Oligonucleotídeos Antissenso/farmacologia
7.
Alzheimers Dement ; 18(5): 988-1007, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34581500

RESUMO

Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Biomarcadores , Descoberta de Drogas , Humanos , Proteínas tau
8.
J Pharmacol Exp Ther ; 374(3): 489-498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32576599

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the loss of repression at the D4Z4 locus leading to aberrant double homeobox 4 (DUX4) expression in skeletal muscle. Activation of this early embryonic transcription factor results in the expression of its target genes causing muscle fiber death. Although progress toward understanding the signals driving DUX4 expression has been made, the factors and pathways involved in the transcriptional activation of this gene remain largely unknown. Here, we describe the identification and characterization of p38α as a novel regulator of DUX4 expression in FSHD myotubes. By using multiple highly characterized, potent, and specific inhibitors of p38α/ß, we show a robust reduction of DUX4 expression, activity, and cell death across patient-derived FSHD1 and FSHD2 lines. RNA-seq profiling reveals that a small number of genes are differentially expressed upon p38α/ß inhibition, the vast majority of which are DUX4 target genes. Our results reveal a novel and apparently critical role for p38α in the aberrant activation of DUX4 in FSHD and support the potential of p38α/ß inhibitors as effective therapeutics to treat FSHD at its root cause. SIGNIFICANCE STATEMENT: Using patient-derived facioscapulohumeral muscular dystrophy (FSHD) myotubes, we characterize the pharmacological relationships between p38α/ß inhibition, double homeobox 4 (DUX4) expression, its downstream transcriptional program, and muscle cell death. p38α/ß inhibition results in potent and specific DUX4 downregulation across multiple genotypes without significant effects in the process of myogenesis in vitro. These findings highlight the potential of p38α/ß inhibitors for the treatment of FSHD, a condition that today has no approved therapies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
9.
Mol Ther Nucleic Acids ; 19: 1290-1298, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092825

RESUMO

Hundreds of dominant-negative myosin mutations have been identified that lead to hypertrophic cardiomyopathy, and the biomechanical link between mutation and disease is heterogeneous across this patient population. To increase the therapeutic feasibility of treating this diverse genetic population, we investigated the ability of locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to selectively knock down mutant myosin transcripts by targeting single-nucleotide polymorphisms (SNPs) that were found to be common in the myosin heavy chain 7 (MYH7) gene. We identified three SNPs in MYH7 and designed ASO libraries to selectively target either the reference or alternate MYH7 sequence. We identified ASOs that selectively knocked down either the reference or alternate allele at all three SNP regions. We also show allele-selective knockdown in a mouse model that was humanized on one allele. These results suggest that SNP-targeting ASOs are a promising therapeutic modality for treating cardiac pathology.

10.
Eur J Neurosci ; 51(10): 2143-2157, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31880363

RESUMO

Fragile X syndrome (FXS) is the most common genetic form of intellectual disability caused by a CGG repeat expansion in the 5'-UTR of the Fragile X mental retardation gene FMR1, triggering epigenetic silencing and the subsequent absence of the protein, FMRP. Reactivation of FMR1 represents an attractive therapeutic strategy targeting the genetic root cause of FXS. However, largely missing in the FXS field is an understanding of how much FMR1 reactivation is required to rescue FMRP-dependent mutant phenotypes. Here, we utilize FXS patient-derived excitatory neurons to model FXS in vitro and confirm that the absence of FMRP leads to neuronal hyperactivity. We further determined the levels of FMRP and the percentage of FMRP-positive cells necessary to correct this phenotype utilizing a mixed and mosaic neuronal culture system and a combination of CRISPR, antisense and expression technologies to titrate FMRP in FXS and WT neurons. Our data demonstrate that restoration of greater than 5% of overall FMRP expression levels or greater than 20% FMRP-expressing neurons in a mosaic pattern is sufficient to normalize a FMRP-dependent, hyperactive phenotype in FXS iPSC-derived neurons.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Pluripotentes Induzidas , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo
11.
J Neurochem ; 147(1): 24-39, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29806693

RESUMO

Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-ß plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-ß synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.


Assuntos
Doença de Alzheimer/genética , Calcineurina/genética , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Biologia Computacional , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Neurônios/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sinapses/metabolismo , Ativação Transcricional
12.
Cell ; 172(5): 979-992.e6, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456084

RESUMO

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.


Assuntos
Metilação de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Edição de Genes , Neurônios/patologia , Animais , Proteína 9 Associada à CRISPR/metabolismo , Epigênese Genética , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Masculino , Camundongos , Neurônios/metabolismo , Fenótipo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
13.
Stem Cell Res ; 20: 67-69, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28395743

RESUMO

Human fibroblast cells collected from a 3-year old, female Rett Syndrome patient with a 32bp deletion in the X-linked MECP2 gene were obtained from the Coriell Institute. Fibroblasts were reprogrammed to iPSC cells using a Sendai-virus delivery system expressing human KOSM transcription factors. Cell-line pluripotency was demonstrated by gene expression, immunocytochemistry, in-vitro differentiation trilineage capacity and was of normal karyotype. Interestingly, subsequent clones retained the epigenetic memory of the parent fibroblasts allowing for the segregation of wild-type and mutant expressing clones. This MECP2 mutant expressing clone may serve as a model for investigating MECP2 reactivation in Rett's Syndrome.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/patologia , Alelos , Diferenciação Celular , Linhagem Celular , Pré-Escolar , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Deleção de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Vírus Sendai/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Pharmacol Exp Ther ; 354(3): 340-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109678

RESUMO

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Animais , Células CHO , Linhagem Celular , Células Cultivadas , Cricetulus , Células HEK293 , Humanos , Camundongos , Ratos , Esquizofrenia/tratamento farmacológico
15.
PLoS One ; 10(5): e0125614, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933020

RESUMO

In Alzheimer's disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.


Assuntos
Doença de Alzheimer/terapia , Anticorpos Monoclonais/farmacologia , Transtornos Cognitivos/terapia , Imunização Passiva , Fosfoproteínas/farmacologia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/imunologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/patologia , Cultura Primária de Células , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Transdução de Sinais , Resultado do Tratamento , Proteínas tau/genética , Proteínas tau/imunologia
18.
PLoS One ; 9(8): e106050, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153994

RESUMO

Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer's disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.


Assuntos
Doença de Alzheimer/genética , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Inflamação/genética , Proteínas tau/genética , Animais , Cromossomos Humanos Par 17/genética , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Hipocampo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Transtornos Parkinsonianos/genética
19.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 2): 173-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24637750

RESUMO

Tau-tubulin kinase 1 (TTBK1) is a dual-specificity (serine/threonine and tyrosine) kinase belonging to the casein kinase 1 superfamily. TTBK1 is a neuron-specific kinase that regulates tau phosphorylation. Hyperphosphorylation of tau is implicated in the pathogenesis of Alzheimer's disease. Two kinase-domain constructs of TTBK1 were expressed in a baculovirus-infected insect-cell system and purified. The purified TTBK1 kinase-domain proteins were crystallized using the hanging-drop vapor-diffusion method. X-ray diffraction data were collected and the structure of TTBK1 was determined by molecular replacement both as an apo structure and in complex with a kinase inhibitor.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Animais , Baculoviridae/genética , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Células Sf9 , Especificidade por Substrato
20.
Alzheimers Dement ; 9(4): 452-458.e1, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23809366

RESUMO

For decades, researchers have focused primarily on a pathway initiated by amyloid beta aggregation, amyloid deposition, and accumulation in the brain as the key mechanism underlying the disease and the most important treatment target. However, evidence increasingly suggests that amyloid is deposited early during the course of disease, even prior to the onset of clinical symptoms. Thus, targeting amyloid in patients with mild to moderate Alzheimer's disease (AD), as past failed clinical trials have done, may be insufficient to halt further disease progression. Scientists are investigating other molecular and cellular pathways and processes that contribute to AD pathogenesis. Thus, the Alzheimer's Association's Research Roundtable convened a meeting in April 2012 to move beyond amyloid and explore AD as a complex multifactorial disease, with the goal of using a more inclusive perspective to identify novel treatment strategies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Terapia de Alvo Molecular , Nootrópicos/uso terapêutico , Envelhecimento , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia/efeitos dos fármacos , Biomarcadores , Encéfalo/metabolismo , Ciclo Celular/efeitos dos fármacos , Comportamento Cooperativo , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação , Resistência à Insulina , Lisossomos/efeitos dos fármacos , Lisossomos/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Neurológicos , Neuroimagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Nootrópicos/farmacologia , Parcerias Público-Privadas , Alocação de Recursos , Proteínas tau/efeitos dos fármacos , Proteínas tau/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA