Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Recognit ; 17(6): 540-57, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15386623

RESUMO

A method has been developed for measurement of antibody affinity and cross-reactivity by surface plasmon resonance spectroscopy using the EK-coil heterodimeric coiled-coil peptide capture system. This system allows for reversible capture of synthetic peptide ligands on a biosensor chip surface, with the advantage that multiple antibody-antigen interactions can be analyzed using a single biosensor chip. This method has proven useful in the development of a synthetic peptide anti-Pseudomonas aeruginosa (PA) vaccine. Synthetic peptide ligands corresponding to the receptor binding domains of pilin from four strains of PA were conjugated to the E-coil strand of the heterodimeric coiled-coil domain and individually captured on the biosensor chip through dimerization with the immobilized K-coil strand. Polyclonal rabbit IgG raised against pilin epitopes was injected over the sensor chip surface for kinetic analysis of the antigen-antibody interaction. The kinetic rate constants, k(on) and k(off), and equilibrium association and dissociation constants, KA and KD, were calculated. Antibody affinities ranged from 1.14 x 10(-9) to 1.60 x 10(-5) M. The results suggest that the carrier protein and adjuvant used during immunization make a dramatic difference in antibody affinity and cross-reactivity. Antibodies raised against the PA strain K pilin epitope conjugated to keyhole limpet haemocyanin using Freund's adjuvant system were more broadly cross-reactive than antibodies raised against the same epitope conjugated to tetanus toxoid using Adjuvax adjuvant. The method described here is useful for detailed characterization of the interaction of polyclonal antibodies with a panel of synthetic peptide ligands with the objective of obtaining high affinity and cross-reactive antibodies in vaccine development.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Peptídeos/imunologia , Pseudomonas aeruginosa/imunologia , Ressonância de Plasmônio de Superfície/métodos , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/análise , Afinidade de Anticorpos , Vacinas Bacterianas/química , Reações Cruzadas , Proteínas de Fímbrias/imunologia , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Ligantes , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Infecções por Pseudomonas/prevenção & controle , Coelhos , Receptores Imunológicos/imunologia , Receptores Imunológicos/fisiologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
2.
Anal Biochem ; 330(1): 98-113, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15183767

RESUMO

To gauge the experimental variability associated with Biacore analysis, 36 different investigators analyzed a small molecule/enzyme interaction under similar conditions. Acetazolamide (222 g/mol) binding to carbonic anhydrase II (CAII; 30000 Da) was chosen as a model system. Both reagents were stable and their interaction posed a challenge to measure because of the low molecular weight of the analyte and the fast association rate constant. Each investigator created three different density surfaces of CAII and analyzed an identical dilution series of acetazolamide (ranging from 4.1 to 1000 nM). The greatest variability in the results was observed during the enzyme immobilization step since each investigator provided their own surface activating reagents. Variability in the quality of the acetazolamide binding responses was likely a product of how well the investigators' instruments had been maintained. To determine the reaction kinetics, the responses from the different density surfaces were fit globally to a 1:1 interaction model that included a term for mass transport. The averaged association and dissociation rate constants were 3.1+/-1.6 x 10(6)M(-1)s(-1) and 6.7+/-2.5 x 10(-2)s(-1), respectively, which corresponded to an average equilibrium dissociation constant (K(D) of 2.6+/-1.4 x 10(-8)M. The results provide a benchmark of variability in interpreting binding constants from the biosensor and highlight keys areas that should be considered when analyzing small molecule interactions.


Assuntos
Acetazolamida/química , Anidrase Carbônica II/química , Ressonância de Plasmônio de Superfície , Acetazolamida/metabolismo , Anidrase Carbônica II/metabolismo , Cinética , Variações Dependentes do Observador , Ligação Proteica , Pesquisadores , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/normas
3.
Biopolymers ; 71(2): 141-68, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12767116

RESUMO

Pseudomonas aeruginosa and Pseudomonas maltophilia account for 80% of opportunistic infections by pseudomonads. Pseudomonas aeruginosa is an opportunistic pathogen that causes urinary tract infections, respiratory system infections, dermatitis, soft tissue infections, bacteremia, and a variety of systemic infections, particularly in patients with severe burns, and in cancer and AIDS patients who are immunosuppressed. Pseudomonas aeruginosa is notable for its resistance to antibiotics, and is therefore a particularly dangerous pathogen. Only a few antibiotics are effective against Pseudomonas, including fluoroquinolones, gentamicin, and imipenem, and even these antibiotics are not effective against all strains. The difficulty treating Pseudomonas infections with antibiotics is most dramatically illustrated in cystic fibrosis patients, virtually all of whom eventually become infected with a strain that is so resistant that it cannot be treated. Since antibiotic therapy has proved so ineffective as a treatment, we embarked on a research program to investigate the development of a synthetic peptide consensus sequence vaccine for this pathogen. In this review article we will describe our work over the last 15 years to develop a synthetic peptide consensus sequence anti-adhesin vaccine and a related therapeutic monoclonal antibody (cross-reactive to multiple strains) to be used in the prevention and treatment of P. aeruginosa infections. Further, we describe the identification and isolation of a small peptide structural element found in P. aeruginosa strain K (PAK) bacterial pili, which has been proven to function as a host epithelial cell-surface receptor binding domain. Heterologous peptides are found in the pili of all strains of P. aeruginosa that have been sequenced to date. Several of these peptide sequences have been used in the development of an consensus sequence anti-adhesin vaccine targeted at the prevention of host cell attachment and further for the generation of a monoclonal antibody capable of prevention and treatment of existing infections.


Assuntos
Anticorpos Antibacterianos/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia , Humanos , Infecções por Pseudomonas/microbiologia , Vacinas de Subunidades Antigênicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA