Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Environ Pollut ; 355: 124233, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801877

RESUMO

The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.

2.
Sci Total Environ ; 931: 172748, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677422

RESUMO

Water pollution is a one of the most contributors to aquatic biodiversity decline. Consequently, ecological risk assessment methods have been developed to investigate the effects of existing stresses on the environment, including the toxic effects of chemicals. One of the existing approaches to quantify toxic risks is called "Potentially Affected Fraction of species" (PAF), which estimates the potential loss of species within a group of species studied. In this study, the PAF method was applied to the Garonne catchment (southwest France) due to the limited information available on the involvement of water pollution in the decline of diadromous fish populations. This approach was used to quantify the potential toxic risk associated with chemical contamination of water for fish species. The objectives were to quantify this risk (1) in the Garonne and Dordogne rivers and (2) in the spawning grounds of two endangered anadromous fish species: the allis shad and the European sturgeon during the development period of their early life stages. Environmental pollution data was provided for 21 sites within the Garonne catchment between 2007 and 2022, and toxicity data was obtained specifically from freshwater toxicity tests on fish species. Then, for each site and each year, the potential toxic risk for a single substance (ssPAF) and for a mixture of substances (msPAF) was calculated and classified as high (>5 %), moderate (>1 % and < 5 %) or low (<1 %). Potential toxic risks were mostly moderate and mainly associated with: metals > other industrial pollutants and hygiene and care products > agrochemicals. In summary, this study highlights the probable involvement of water contamination on the decline, fate and restoration of diadromous fish populations in the Garonne catchment, focusing notably on the toxic effects on early life stages, a previously understudied topic.


Assuntos
Espécies em Perigo de Extinção , Monitoramento Ambiental , Peixes , Rios , Poluentes Químicos da Água , Animais , França , Rios/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco , Migração Animal
3.
Environ Pollut ; 347: 123685, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460591

RESUMO

Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-µg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 µg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.


Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Niacinamida/análogos & derivados , Poluentes Químicos da Água , Animais , Fungicidas Industriais/metabolismo , Ecossistema , Organismos Aquáticos , Peixe-Zebra/metabolismo , Daphnia , Niacinamida/toxicidade , Poluentes Químicos da Água/metabolismo
4.
Environ Toxicol Pharmacol ; 104: 104308, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926371

RESUMO

Copper pyrithione (CuPT) is used as a co-biocide in new antifouling paints but its toxicity remains little known. To compare the toxicity of copper-based compounds, rainbow trout (Oncorhynchus mykiss) larvae were exposed for 8-day to CuPT and CuSO4 at equivalent copper concentrations. CuPT exposure led to the greatest accumulation of Cu in larvae. Exposure to 10 µg.L-1 CuPT induced 99% larval mortality but only 4% for CuSO4-exposed larvae. The larval development and growth were affected by CuPT (from 0.5 µg.L-1 Cu) but not by CuSO4. Lipid peroxidation was not induced by either contaminant. The expression of genes involved in oxidative stress defence, detoxification and copper transport was induced in larvae exposed to CuSO4 and CuPT but at higher concentrations for CuPT. This study highlights the marked toxicity of CuPT for early life stages of fish and raises the question of the possible environmental risks of this antifouling compound.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Sulfato de Cobre/toxicidade , Cobre/toxicidade , Oncorhynchus mykiss/metabolismo , Larva , Poluentes Químicos da Água/análise
5.
Aquat Toxicol ; 265: 106766, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980847

RESUMO

Tritium is a betta emitter radionuclide. Being an isotope of hydrogen, it is easily transferred to different environmental compartments, and to human and non-human biota. Considering that tritium levels are expected to rise in the upcoming decades with the development of nuclear facilities producing tritium using fission processes, investigating the potential toxicity of tritium to human and non-human biota is necessary. Tritiated thymidine, an organic form of tritium, has been used in this study to assess its toxicity on fish embryo development. Zebrafish embryos (3.5 hpf; hours post fertilization) have been exposed to tritiated thymidine at three different activity concentrations (7.5; 40; 110 kBq/mL) for four days. These experiments highlighted that zebrafish development was affected by the exposure to organic tritium, with smaller larvae at 3 dpf after exposure to the two lowest dose rates (22 and 170 µGy/h), a delayed hatching after exposure to the two highest dose rates (170 and 470 µGy/h), an increase in the spontaneous tail movement (1 dpf) and a decrease in the heartbeat (3 dpf) after exposure to the highest dose rate. The results also highlighted an increase in ROS production in larvae exposed to the intermediate dose rate. A dysregulation of many genes, involved in apoptosis, DNA repair or oxidative stress, was also found after 1 day of exposure to the lowest tritium dose rate. Our results thus suggest that exposure to tritiated thymidine from a dose rate as low as 22 µGy/h can lead to sublethal effects, with an effect on the development, dysregulation of many genes and increase of the ROS production. This paper provides valuable information on toxic effects arising from the exposure of fish to an organic form of tritium, which was the main objective of this study.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Trítio/toxicidade , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Larva , Timidina/farmacologia , Embrião não Mamífero
6.
Mar Pollut Bull ; 194(Pt B): 115361, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37579596

RESUMO

The chemical components of plastic wastes have made their disposal a major economic, social, and environmental problem worldwide. This study evaluated the acute toxicity and genotoxicity of marine plastic debris on the beaches of Concepción Bay, Central Chile, taken during three periods (spring, summer, and winter). An integrated approach was used, including chemical and toxicological data, using the Microtox® test with Vibrio fischeri and SOS chromotest with Escherichia coli and concentrations of polychlorinated biphenyls (PCBs), Organochlorine Pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The results presented here exclusively include the novel data obtained from the winter campaign, revealing high concentrations of PBDEs (238 ± 521 ng g-1). In addition, the genotoxicity and acute toxicity tests were sensitive for most of the samples studied. This investigation is the first attempt to analyse the toxicity of plastic debris in coastal areas along the Chilean coast.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Plásticos/toxicidade , Poluentes Orgânicos Persistentes , Chile , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Monitoramento Ambiental/métodos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Praguicidas/toxicidade , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 898: 165460, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454851

RESUMO

Assessment of microplastic (MP) contamination is still needed to evaluate this threat correctly and tackle this issue. Here, MP contamination was assessed for a meso-tidal lagoon of the Atlantic coast (Arcachon Bay, France). Sea surface, water column, intertidal sediments and wild oysters were sampled. Five different stations were studied to assess the spatial distribution of the contamination. Two were outside of the bay and three were inside the bay (from the inlet to the back). A distinction was made between all anthropogenic particles (AP, i.e. visually sorted) and MP (i.e. plastic polymer confirmed by ATR-FTIR spectroscopy). The length of particles recovered in this study ranged between 17 µm and 5 mm. Concentration and composition in sea surface and water column samples showed spatial variations while sediment and oyster samples did not. At outside stations, the sea surface and the water column presented a blended composition regarding shapes and polymers and low to high concentrations (e.g. 0.16 ± 0.08 MP.m-3 and 561.7 ± 68.5 MP.m-3, respectively for sea surface and water column), which can be due to coastal processes and nearby input sources. The inlet station displayed a well-marked pattern only at the sea surface. High AP and MP concentrations were recorded, and fragments along with polyethylene overwhelmed (respectively 76.0 % and 73.2 %). Higher surface currents could explain this pattern. At the bay back, AP and MP concentrations were lower and fibers were mainly recorded. Weaker hydrodynamics in this area was suspected to drive this contamination profile. Overall, fragments and buoyant particles were mainly detected at the sea surface while fibers and negatively buoyant particles prevailed in other compartments. Most of the studied samples presented an important contribution of fiber-shaped particles (from 31.5 % to 94.2 %). Finally, contamination was ubiquitous as AP and MP were found at all stations in all sample types.

8.
Chemosphere ; 333: 138894, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164198

RESUMO

Plastics contain various types and amounts of additives that can leach into the water column when entering aquatic ecosystems. Some leached plastic additives are hazardous to marine biota at environmentally relevant concentrations. Disparate methodological approaches have been adopted for toxicity testing of plastic leachates, making comparison difficult. Here we propose a protocol to standardize the methodology to obtain leachates from microplastics (MPs) for aquatic toxicity testing. Literature reviewing and toxicity tests using marine model organisms and different types of MPs were conducted to define the main methodological aspects of the protocol. Acute exposure to leachates from the studied plastics caused negative effects on the early life stages of sea urchins and marine bacteria. We provide recommendations of key factors influencing lixiviation of MPs , such as particle size (<250 µm), solid-to-liquid ratio (1-10 g/L), mixing conditions (1-60 rpm), and lixiviation time (72 h). The proposed methodology was successful to determine the toxicity of leachates from different micronized plastics on marine biota. Our recommendations balance sensitivity, feasibility and environmental relevance, and their use would help ensure comparability amongst studies for a better assessment of the toxicity of plastic leachates on aquatic biota.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Microplásticos , Organismos Aquáticos , Testes de Toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-37140856

RESUMO

The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.

10.
Fish Shellfish Immunol ; 137: 108793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146847

RESUMO

Marine environments receive plastic waste, where it suffers a transformation process into smaller particles. Among them, microplastics (MPs; <5 mm) are ingested by aquatic organisms leading to negative effects on animal welfare. The interactions between MPs, contaminants and organisms are poorly understood. To clarify this issue, European seabass (Dicentrarchus labrax L.) were fed with diets supplemented with 0 (control), polyethylene (PE) MPs (100 mg/kg diet), perfluorooctanesulfonic acid (PFOS, 4.83 µg/kg diet) or PFOS adsorbed to MPs (MPs-PFOS; final concentrations of 4.83 µg and 100 mg of PFOS and MP per kg of feed, respectively). Samples of skin mucus, serum, head-kidney (HK), liver, muscle, brain and intestine were obtained. PFOS levels were high in the liver of fish fed with the PFOS-diet, and markedly reduced when adsorbed to MPs. Compared to the control groups, liver EROD activity did not show any significant changes, whereas brain and muscle cholinesterase activities were decreased in all the groups. The histological and morphometrical study on liver and intestine showed significant alterations in fish fed with the experimental diets. At functional level, all the experimental diets affected the humoral (peroxidase, IgM, protease and bactericidal activities) as well as cellular (phagocytosis, respiratory burst and peroxidase) activities of HK leukocytes, being more marked those effects caused by the PFOS diet. Besides, treatments produced inflammation and oxidative stress as evidenced at gene level. Principal component analysis demonstrated that seabass fed with MPs-PFOS showed more similar effects to MPs alone than to PFOS. Overall, seabass fed with MPs-PFOS diet showed similar or lower toxicological alterations than those fed with MPs or PFOS alone demonstrating the lack of additive effects or even protection against PFOS toxicity.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno , Plásticos , Bass/genética , Peroxidases , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 327: 138521, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990359

RESUMO

The lack of knowledge about the sensitivity of the endangered freshwater pearl mussel (FWPM) Margaritifera margaritifera to environmental pollution and the rapid decline of its populations in Europe, have led to the need of developing non-destructive experimental protocols in order to assess the impact of such pollution. This species has a complex life cycle and the early life stages are considered the most sensitive. This study deals with the development of a methodology for the assessment of juvenile mussels' locomotor behavior using an automated video tracking system. Different parameters were determined such as the duration of the video recording and light exposure as a stimulus during the experiment. Locomotion behavior pattern of juveniles was assessed in control condition and also following exposure to sodium chloride as a positive control in order to validate the experimental protocol developed in this study. Results showed that juveniles locomotion behavior was stimulated under light exposure. Moreover, exposure to sublethal concentrations of sodium chloride (0.8 and 1.2 g/L) for 24 h was found to decrease juveniles' locomotion by almost three-times, thus validating our experimental methodology. This study allowed to provide a new tool for the assessment of stress condition impacts on the juveniles of the endangered FWPM, highlighting the interest of such non-destructive biomarker of health for protected species. Consequently, this will help in the improvement of our knowledge on M. margaritifera sensitivity to environmental pollution.


Assuntos
Bivalves , Cloreto de Sódio , Animais , Água Doce , Europa (Continente) , Locomoção
12.
Sci Total Environ ; 865: 161268, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592917

RESUMO

Carbaryl and fenitrothion are two insecticides sharing a common mode of action, the inhibition of the acetylcholinesterase (AChE) activity. Their use is now regulated or banned in different countries, and the environmental levels of both compounds in aquatic ecosystems have decreased to the range of pg/L to ng/L. As these concentrations are below the non-observed-adverse-effect-concentrations (NOAEC) for AChE inhibition reported for both compounds in aquatic organisms, there is a general agreement that the current levels of these two chemicals are safe for aquatic organisms. In this study we have exposed zebrafish, Japanese medaka and Daphnia magna to concentrations of carbaryl and fenitrothion under their NOAECs for 24-h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR) and its habituation have been evaluated. Both pesticides increased the HR in the three selected model organisms, although the intensity of this effect was chemical-, concentration- and organism-dependent. The exposure to both pesticides also led to a decrease in BLA and an increase in VMR in all three species, although this effect was only significant in zebrafish larvae. For SR and its habituation, the response profile was more species- and concentration-specific. The results presented in this manuscript demonstrate that concentrations of carbaryl and fenitrothion well below their respective NOAECs induce tachycardia and the impairment of ecologically relevant behaviors in phylogenetically distinct aquatic model organisms, both vertebrates and invertebrates, emphasizing the need to include this range of concentrations in the environmental risk assessment.


Assuntos
Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Carbaril/toxicidade , Fenitrotion/toxicidade , Peixe-Zebra , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase , Frequência Cardíaca , Organismos Aquáticos , Ecossistema , Inseticidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 308: 119721, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809711

RESUMO

Microplastics (MPs), widely present in aquatic ecosystems, can be ingested by numerous organisms, but their toxicity remains poorly understood. Toxicity of environmental MPs from 2 beaches located on the Guadeloupe archipelago, Marie Galante (MG) and Petit-Bourg (PB) located near the North Atlantic gyre, was evaluated. A first experiment consisted in exposing early life stages of zebrafish (Danio rerio) to MPs at 1 or 10 mg/L. The exposure of early life stages to particles in water induced no toxic effects except a decrease in larval swimming activity for both MPs exposures (MG or PB). Then, a second experiment was performed as a chronic feeding exposure over 4 months, using a freshwater fish species, zebrafish, and a marine fish species, marine medaka (Oryzias melastigma). Fish were fed with food supplemented with environmentally relevant concentrations (1% wet weight of MPs in food) of environmental MPs from both sites. Chronic feeding exposure led to growth alterations in both species exposed to either MG or PB MPs but were more pronounced in marine medaka. Ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) activities were only altered for marine medaka. Reproductive outputs were modified following PB exposure with a 70 and 42% decrease for zebrafish and marine medaka, respectively. Offspring of both species (F1 generation) were reared to evaluate toxicity following parental exposure on unexposed larvae. For zebrafish offspring, it revealed premature mortality after parental MG exposure and parental PB exposure produced behavioural disruptions with hyperactivity of F1 unexposed larvae. This was not observed in marine medaka offspring. This study highlights the ecotoxicological consequences of short and long-term exposures to environmental microplastics relevant to coastal marine areas, which represent essential habitats for a wide range of aquatic organisms.


Assuntos
Oryzias , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Ecossistema , Larva , Microplásticos , Plásticos/toxicidade , Reprodução , Natação , Poluentes Químicos da Água/análise , Peixe-Zebra
14.
Mar Environ Res ; 179: 105677, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35738152

RESUMO

Behavioral parameters are increasingly considered sensitive and early bioindicators of toxicity in aquatic organisms. A video-tracking tool was specifically developed to monitor the swimming behaviour of D-larvae of the Mediterranean mussel, Mytilus galloprovincialis, in controlled laboratory conditions. Both maximum and average swimming speeds and trajectories were recorded. We then investigated the impact of copper and silver with or without a moderate rise of temperature on swimming behavior and acetylcholinesterase (AChE) activity of mussel D-larvae and the possible mechanistic link between both biological responses. Our results showed that copper and/or silver exposure, as well as temperature increase, disrupts the swimming behavior of mussel larvae which could compromise their dispersal and survival. In addition, the combined effect of temperature and metals significantly (p < 0.05) increased AChE activity in mussel larvae. Pearson's correlation analysis was performed and results showed that the AChE activity is positively correlated with maximum speeds (r = 0.71, p < 0.01). This study demonstrates the value of behavioral analyzes of aquatic invertebrates as a sensitive and integrate marker of the effects of stressors.


Assuntos
Mytilus , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Cobre/toxicidade , Resposta ao Choque Térmico , Larva , Mytilus/fisiologia , Prata , Natação , Poluentes Químicos da Água/toxicidade
15.
Environ Sci Technol ; 56(12): 8114-8123, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35593651

RESUMO

Vertical dynamics of microplastics (MPs) in the water column are complex and not fully understood due to the diversity of environmental MPs and the impact of weathering and biofouling on their dynamical properties. In this study, we investigate the effects of the particle properties and biofilm on the vertical (settling or rising) velocity of microplastic sheets and fibers under laboratory conditions. The experiments focus on three types of MPs (polyester PES fibers, polyethylene terephthalate PET sheets, and polypropylene PP sheets) of nine sizes and two degrees of biological colonization. Even though pristine PES fibers and PET sheets had a similar density, the sinking velocity of fibers was much smaller and independent of their length. The settling or rising velocity of sheets increased with the particle size up to a threshold and then decreased in the wake of horizontal oscillations in large particles. Biofilms had unexpected effects on vertical velocities. Irregular biofilm distributions can trigger motion instabilities that decrease settling velocities of sheets despite the increase in density. Biofilms can also modify the orientation of fibers, which may increase their settling velocity. Finally, we selected the most performant theoretical formulation for each type of particle and proposed modifications to consider the effect of biofilm distribution.


Assuntos
Incrustação Biológica , Poluentes Químicos da Água , Biofilmes , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
16.
Environ Sci Pollut Res Int ; 29(39): 59751-59769, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35391645

RESUMO

The main objective of this study was to improve our knowledge on the responses of fish populations to multistress (diffuse pollution and warming waters) in estuaries. Adult flounders were caught in two estuaries in the Eastern English Channel: the heavily polluted Seine estuary vs the moderately contaminated Canche estuary. Fish samplings were conducted in January just before the reproduction period, and in July when gonads were at rest. The overall rise in coastal winter water temperatures detected over the Channel impairs the flounder's phenology of reproduction in the two estuaries, inducing a delay of maturation process and probably also spawning. The higher liver histopathology index in Seine vs Canche could be the consequence of the fish exposition to a complex cocktail of contaminants in a strongly industrialized estuary. Higher levels of neurotoxicity, gill lipid peroxidation, and liver EROD activity were observed in Seine vs Canche. Furthermore, a possible impairment in mitochondrial metabolism was suggested in the Seine flounder population. We confirmed in this study the potential role of two membrane lipids (sphingomyelin and phosphatidylserine) in the resistance towards oxidative stress in Seine and Canche. Finally, we suggest that the Seine flounder population (and possibly the connected Eastern English Channel flounder populations over the French Coast) could be seriously impacted in the future by multistress: higher winter temperatures and chemical contamination.


Assuntos
Linguado , Poluentes Químicos da Água , Animais , Mudança Climática , Monitoramento Ambiental , Estuários , Linguado/metabolismo , França , Estações do Ano , Poluentes Químicos da Água/análise
17.
Environ Pollut ; 294: 118600, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863892

RESUMO

This study focused on the impacts of aged aquaculture microplastics (MPs) on oysters (Crassostrea gigas). Adult oysters were exposed for two months to a cocktail of MPs representative of the contamination of the Pertuis Charentais area (Bay of Biscay, France) and issuing from oyster framing material. The MPs mixture included 28% of polyethylene, 40% of polypropylene and 32% of PVC (polyvinyl chloride). During the exposure, tissues were sampled for various analyzes (MP quantification, toxicity biomarkers). Although no effect on the growth of adult oysters was noted, the mortality rate of bivalves exposed to MPs (0.1 and 10 mg. L-1 MP) increased significantly (respectively 13.3 and 23.3% of mortalities cumulative). On the one hand, the responses of biomarkers revealed impacts on oxidative stress, lipid peroxidation and environmental stress. At 56 days of exposure, significant increases were noted for Glutathione S-Transferase (GST, 10 mg. L-1 MP), Malondialdehyde (MDA, 10 mg. L-1 MP) and Laccase (LAC, 0.1 and 10 mg. L-1 MP). No variations were observed for Superoxyde Dismutase (SOD). Besides, ingestion of MPs in oyster tissues and the presence in biodeposits was highlighted. In addition, in vitro fertilisations were performed to characterize MPs effects on the offspring. Swimming behavior, development and growth of D-larvae were analysed at 24-, 48- and 72-h after fertilisation. D-larvae, from exposed parents, demonstrated reduced locomotor activity. Developmental abnormalities and arrest as well as growth retardation were also noted. This study highlighted direct and intergenerational effects of MPs from aged plastic materials on Pacific oysters.


Assuntos
Crassostrea , Microplásticos/toxicidade , Poluentes Químicos da Água , Animais , Crassostrea/efeitos dos fármacos , Polietileno , Polipropilenos , Cloreto de Polivinila , Poluentes Químicos da Água/toxicidade
18.
Sci Total Environ ; 797: 149144, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346359

RESUMO

Coastal environments are a predominant ultimate destination of marine debris, becoming a key focus of studies assessing microplastic (MP) contamination. Here, we described the visible fraction of MP (from 0.5 to 5 mm) that washed up during the high tide at different sites of a semi-enclosed mesotidal bay and investigated the main abiotic factors driving MP beaching. Three contrasted beaches of the Arcachon Bay (SW France) were monitored on a monthly basis during 2019. Samplings were made along a 100 m longitudinal transect at the high-water strandline (4 quadrats of 0.25m2) and at an intermediate tidal range. Each sampled particle was characterized by morphometric data (e.g. size, shape, color, roughness) and polymer identification was performed by ATR-FTIR technique. Results show that MP concentration was higher on the beach located at the mouth of the bay (36.0 ± 39.2 MP.m-2) than at the back and the outside of the bay (respectively 2.7 ± 4.4 and 1.7 ± 2.4 MP.m-2). This may be related to the strong currents at the entry of the embayment and the beach orientation, exposed to predominant winds. Beached MP were mainly pre-production pellets and fragments as they represented respectively 49% and 39% of all analyzed shapes. Polymers with low density were particularly abundant. Polyethylene represented 69% of all the particles while polypropylene accounted for 17% and polystyrene for 10%. We also observed that MP were mostly washed up when wind, waves and river flow were more intense. Analysis suggest that wind direction and speed are key factors influencing beaching as strong onshore wind enhance this process.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , França , Plásticos , Rios , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 801: 149462, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34411792

RESUMO

In the past few decades, glyphosate became the most used herbicide substance worldwide. As a result, the substance is ubiquitous in surface waters. Concerns have been raised about its ecotoxicological impact, but little is known about its generational toxicity. In this study, we investigate the impact of an environmentally relevant concentration of glyphosate and its co-formulants on an F2 generation issued from exposed generations F0 and F1. Trans, inter and multigenerational toxicity of 1 µgL-1 of the active substance was evaluated on early stages of development and juvenile rainbow trout (Oncorhynchus mykiss) using different molecular, biochemical, immuno-hematologic, and biometric parameters, behavior analysis, and a viral challenge. Reproductive parameters of generation F1 were not affected. However, developmental toxicity in generation F2 due to glyphosate alone or co-formulated was observed with head size changes (e.g. head surface up to +10%), and metabolic disruptions (e.g. 35% reduction in cytochrome-c-oxidase). Moreover, larvae exposed transgenerationally to Viaglif and intergenerationally to glyphosate and Roundup presented a reduced response to light, potentially indicating altered escape behavior. Overall methylation was, however, not altered and further experiments using gene-specific DNA metylation analyses are required. After several months, biochemical parameters measured in juvenile fish were no longer impacted, only intergenerational exposure to glyphosate drastically increased the susceptibility of rainbow trout to hematopoietic necrosis virus. This result might be due to a lower antibody response in exposed fish. In conclusion, our results show that generational exposure to glyphosate induces developmental toxicity and increases viral susceptibility. Co-formulants present in glyphosate-based herbicides can modulate the toxicity of the active substance. Further investigations are required to study the specific mechanisms of transmission but our results suggest that both non-genetic mechanisms and exposure during germinal stage could be involved.


Assuntos
Herbicidas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Glifosato
20.
Toxics ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34437492

RESUMO

The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA