RESUMO
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 µg/L of LO WAFs and 10 µg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Assuntos
Oryzias , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Dano ao DNA , Larva/efeitos dos fármacos , DNARESUMO
Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.
Assuntos
Monitoramento Biológico , Monitoramento Ambiental , Peixes , Poluentes Químicos da Água , Animais , Monitoramento Biológico/métodos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Espécies Sentinelas , Poluição da Água/estatística & dados numéricosRESUMO
Fish are currently used models for the toxicity assessment of chemicals, including polycyclic aromatic hydrocarbons (PAHs). Alternative methods including fish cell lines are currently used to provide fast and reliable results on the toxic properties of chemicals while respecting ethical concerns about animal testing. The Rainbow trout liver cell line RTLW1 was used to analyze the effects of two water-accommodated fractions from two crude oils: Arabian Light crude oil (LO) and refined oil from Erika (HO). Several toxicity endpoints were assessed in this study, including cytotoxicity, EROD activity, DNA damage (comet and micronucleus assays), and ROS production. RTL-W1 cells were exposed for 24 h at two or three dilutions of WAF at 1000 µg/L (0.1% (1 µg/L), 1% (10 µg/L), and 10% (100 µg/L)) for cytotoxicity and EROD activity and 1% and 10% for ROS production and genotoxicity). Exposure of RTL-W1 cells to LO WAF induced a significant increase of EROD activity and ROS production and altered DNA integrity as revealed by both the comet assay and the micronucleus test for 10 µg/L of LO. On the other hand, HO WAF exhibited limited toxic effects except for an EROD induction for 1% WAF dilution. These results confirmed the usefulness of RTL-W1 cells for in vitro toxicological assessment of chemical mixtures.
Assuntos
Dano ao DNA , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Linhagem Celular , Poluentes Químicos da Água/toxicidade , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes para Micronúcleos , Ensaio Cometa , Espécies Reativas de Oxigênio/metabolismoRESUMO
The characterization of microplastic (MP) contamination in marine species is increasing as concerns about environmental and food safety are more and more discussed. Here, we reported a quantitative and qualitative assessment of the contamination by anthropogenic particles (from visual sorting; AP) and MP (plastic-made) in the whole soft body or digestive tract of marine species. Four commercial species were studied, namely the Pacific oyster (Magallana gigas), the spiny spider crab (Maja sp.), the common sole (Solea solea) and seabass (Dicentrarchus labrax or punctatus). AP and MP uptake were studied over three to four seasons depending on the species. After tissues digestion, particles were extracted under a stereomicroscope and morphometric characteristics were reported. Then, polymers were identified by ATR-FTIR spectroscopy. Seasonal variations were mainly described in the Pacific oyster as AP uptake was lower in autumn and MP uptake was higher in spring. These variations may be linked to the reproduction and growth cycles of this species. Moreover, seabass ingestion was lower in autumn compared to winter. Contamination in spider crabs and soles showed either weak or no seasonal trends, both quantitatively and qualitatively. Overall, AP contamination in all studied species ranged from 1.17 ± 1.89 AP.ind-1 (in sole) to 4.07 ± 6.69 AP.ind-1 (in seabass) while MP contamination ranged from 0.10 ± 0.37 MP.ind-1 (in sole) to 1.09 ± 3.06 MP.ind-1 (in spider crab). Fibers were mostly reported in all species (at least 77.7%), along with cellulosic polymers (at least 43.7%). AP and MP uptake were detected in all species and at almost all seasons, with the only exception of the common sole during autumn. Therefore, this study emphasizes the ubiquity of AP and MP contamination in marine species and provides new knowledges about seasonal uptake by commercial species.
Assuntos
Bass , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Microplásticos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Monitoramento Ambiental/métodos , Bass/metabolismo , França , Ostreidae/metabolismo , Ostreidae/química , Estações do Ano , Braquiúros/metabolismo , Braquiúros/química , Plásticos/análise , Plásticos/metabolismoRESUMO
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.
Assuntos
Organismos Aquáticos , Invertebrados , Plásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Mar Mediterrâneo , Organismos Aquáticos/efeitos dos fármacos , Invertebrados/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Monitoramento Ambiental , Oceano Atlântico , Ecotoxicologia , Vertebrados , Oryzias , Paracentrotus/efeitos dos fármacosRESUMO
Water pollution is a one of the most contributors to aquatic biodiversity decline. Consequently, ecological risk assessment methods have been developed to investigate the effects of existing stresses on the environment, including the toxic effects of chemicals. One of the existing approaches to quantify toxic risks is called "Potentially Affected Fraction of species" (PAF), which estimates the potential loss of species within a group of species studied. In this study, the PAF method was applied to the Garonne catchment (southwest France) due to the limited information available on the involvement of water pollution in the decline of diadromous fish populations. This approach was used to quantify the potential toxic risk associated with chemical contamination of water for fish species. The objectives were to quantify this risk (1) in the Garonne and Dordogne rivers and (2) in the spawning grounds of two endangered anadromous fish species: the allis shad and the European sturgeon during the development period of their early life stages. Environmental pollution data was provided for 21 sites within the Garonne catchment between 2007 and 2022, and toxicity data was obtained specifically from freshwater toxicity tests on fish species. Then, for each site and each year, the potential toxic risk for a single substance (ssPAF) and for a mixture of substances (msPAF) was calculated and classified as high (>5 %), moderate (>1 % and < 5 %) or low (<1 %). Potential toxic risks were mostly moderate and mainly associated with: metals > other industrial pollutants and hygiene and care products > agrochemicals. In summary, this study highlights the probable involvement of water contamination on the decline, fate and restoration of diadromous fish populations in the Garonne catchment, focusing notably on the toxic effects on early life stages, a previously understudied topic.
Assuntos
Espécies em Perigo de Extinção , Monitoramento Ambiental , Peixes , Rios , Poluentes Químicos da Água , Animais , França , Rios/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco , Migração AnimalRESUMO
Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-µg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 µg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.
Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Niacinamida/análogos & derivados , Poluentes Químicos da Água , Animais , Fungicidas Industriais/metabolismo , Ecossistema , Organismos Aquáticos , Peixe-Zebra/metabolismo , Daphnia , Niacinamida/toxicidade , Poluentes Químicos da Água/metabolismoRESUMO
Copper pyrithione (CuPT) is used as a co-biocide in new antifouling paints but its toxicity remains little known. To compare the toxicity of copper-based compounds, rainbow trout (Oncorhynchus mykiss) larvae were exposed for 8-day to CuPT and CuSO4 at equivalent copper concentrations. CuPT exposure led to the greatest accumulation of Cu in larvae. Exposure to 10 µg.L-1 CuPT induced 99% larval mortality but only 4% for CuSO4-exposed larvae. The larval development and growth were affected by CuPT (from 0.5 µg.L-1 Cu) but not by CuSO4. Lipid peroxidation was not induced by either contaminant. The expression of genes involved in oxidative stress defence, detoxification and copper transport was induced in larvae exposed to CuSO4 and CuPT but at higher concentrations for CuPT. This study highlights the marked toxicity of CuPT for early life stages of fish and raises the question of the possible environmental risks of this antifouling compound.
Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Sulfato de Cobre/toxicidade , Cobre/toxicidade , Oncorhynchus mykiss/metabolismo , Larva , Poluentes Químicos da Água/análiseRESUMO
Tritium is a betta emitter radionuclide. Being an isotope of hydrogen, it is easily transferred to different environmental compartments, and to human and non-human biota. Considering that tritium levels are expected to rise in the upcoming decades with the development of nuclear facilities producing tritium using fission processes, investigating the potential toxicity of tritium to human and non-human biota is necessary. Tritiated thymidine, an organic form of tritium, has been used in this study to assess its toxicity on fish embryo development. Zebrafish embryos (3.5 hpf; hours post fertilization) have been exposed to tritiated thymidine at three different activity concentrations (7.5; 40; 110 kBq/mL) for four days. These experiments highlighted that zebrafish development was affected by the exposure to organic tritium, with smaller larvae at 3 dpf after exposure to the two lowest dose rates (22 and 170 µGy/h), a delayed hatching after exposure to the two highest dose rates (170 and 470 µGy/h), an increase in the spontaneous tail movement (1 dpf) and a decrease in the heartbeat (3 dpf) after exposure to the highest dose rate. The results also highlighted an increase in ROS production in larvae exposed to the intermediate dose rate. A dysregulation of many genes, involved in apoptosis, DNA repair or oxidative stress, was also found after 1 day of exposure to the lowest tritium dose rate. Our results thus suggest that exposure to tritiated thymidine from a dose rate as low as 22 µGy/h can lead to sublethal effects, with an effect on the development, dysregulation of many genes and increase of the ROS production. This paper provides valuable information on toxic effects arising from the exposure of fish to an organic form of tritium, which was the main objective of this study.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Trítio/toxicidade , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Larva , Timidina/farmacologia , Embrião não MamíferoRESUMO
The chemical components of plastic wastes have made their disposal a major economic, social, and environmental problem worldwide. This study evaluated the acute toxicity and genotoxicity of marine plastic debris on the beaches of Concepción Bay, Central Chile, taken during three periods (spring, summer, and winter). An integrated approach was used, including chemical and toxicological data, using the Microtox® test with Vibrio fischeri and SOS chromotest with Escherichia coli and concentrations of polychlorinated biphenyls (PCBs), Organochlorine Pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The results presented here exclusively include the novel data obtained from the winter campaign, revealing high concentrations of PBDEs (238 ± 521 ng g-1). In addition, the genotoxicity and acute toxicity tests were sensitive for most of the samples studied. This investigation is the first attempt to analyse the toxicity of plastic debris in coastal areas along the Chilean coast.
Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Plásticos/toxicidade , Poluentes Orgânicos Persistentes , Chile , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Monitoramento Ambiental/métodos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Praguicidas/toxicidade , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
Assessment of microplastic (MP) contamination is still needed to evaluate this threat correctly and tackle this issue. Here, MP contamination was assessed for a meso-tidal lagoon of the Atlantic coast (Arcachon Bay, France). Sea surface, water column, intertidal sediments and wild oysters were sampled. Five different stations were studied to assess the spatial distribution of the contamination. Two were outside of the bay and three were inside the bay (from the inlet to the back). A distinction was made between all anthropogenic particles (AP, i.e. visually sorted) and MP (i.e. plastic polymer confirmed by ATR-FTIR spectroscopy). The length of particles recovered in this study ranged between 17 µm and 5 mm. Concentration and composition in sea surface and water column samples showed spatial variations while sediment and oyster samples did not. At outside stations, the sea surface and the water column presented a blended composition regarding shapes and polymers and low to high concentrations (e.g. 0.16 ± 0.08 MP.m-3 and 561.7 ± 68.5 MP.m-3, respectively for sea surface and water column), which can be due to coastal processes and nearby input sources. The inlet station displayed a well-marked pattern only at the sea surface. High AP and MP concentrations were recorded, and fragments along with polyethylene overwhelmed (respectively 76.0 % and 73.2 %). Higher surface currents could explain this pattern. At the bay back, AP and MP concentrations were lower and fibers were mainly recorded. Weaker hydrodynamics in this area was suspected to drive this contamination profile. Overall, fragments and buoyant particles were mainly detected at the sea surface while fibers and negatively buoyant particles prevailed in other compartments. Most of the studied samples presented an important contribution of fiber-shaped particles (from 31.5 % to 94.2 %). Finally, contamination was ubiquitous as AP and MP were found at all stations in all sample types.
RESUMO
The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.
RESUMO
Plastics contain various types and amounts of additives that can leach into the water column when entering aquatic ecosystems. Some leached plastic additives are hazardous to marine biota at environmentally relevant concentrations. Disparate methodological approaches have been adopted for toxicity testing of plastic leachates, making comparison difficult. Here we propose a protocol to standardize the methodology to obtain leachates from microplastics (MPs) for aquatic toxicity testing. Literature reviewing and toxicity tests using marine model organisms and different types of MPs were conducted to define the main methodological aspects of the protocol. Acute exposure to leachates from the studied plastics caused negative effects on the early life stages of sea urchins and marine bacteria. We provide recommendations of key factors influencing lixiviation of MPs , such as particle size (<250 µm), solid-to-liquid ratio (1-10 g/L), mixing conditions (1-60 rpm), and lixiviation time (72 h). The proposed methodology was successful to determine the toxicity of leachates from different micronized plastics on marine biota. Our recommendations balance sensitivity, feasibility and environmental relevance, and their use would help ensure comparability amongst studies for a better assessment of the toxicity of plastic leachates on aquatic biota.
Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Microplásticos , Organismos Aquáticos , Testes de ToxicidadeRESUMO
Marine environments receive plastic waste, where it suffers a transformation process into smaller particles. Among them, microplastics (MPs; <5 mm) are ingested by aquatic organisms leading to negative effects on animal welfare. The interactions between MPs, contaminants and organisms are poorly understood. To clarify this issue, European seabass (Dicentrarchus labrax L.) were fed with diets supplemented with 0 (control), polyethylene (PE) MPs (100 mg/kg diet), perfluorooctanesulfonic acid (PFOS, 4.83 µg/kg diet) or PFOS adsorbed to MPs (MPs-PFOS; final concentrations of 4.83 µg and 100 mg of PFOS and MP per kg of feed, respectively). Samples of skin mucus, serum, head-kidney (HK), liver, muscle, brain and intestine were obtained. PFOS levels were high in the liver of fish fed with the PFOS-diet, and markedly reduced when adsorbed to MPs. Compared to the control groups, liver EROD activity did not show any significant changes, whereas brain and muscle cholinesterase activities were decreased in all the groups. The histological and morphometrical study on liver and intestine showed significant alterations in fish fed with the experimental diets. At functional level, all the experimental diets affected the humoral (peroxidase, IgM, protease and bactericidal activities) as well as cellular (phagocytosis, respiratory burst and peroxidase) activities of HK leukocytes, being more marked those effects caused by the PFOS diet. Besides, treatments produced inflammation and oxidative stress as evidenced at gene level. Principal component analysis demonstrated that seabass fed with MPs-PFOS showed more similar effects to MPs alone than to PFOS. Overall, seabass fed with MPs-PFOS diet showed similar or lower toxicological alterations than those fed with MPs or PFOS alone demonstrating the lack of additive effects or even protection against PFOS toxicity.
Assuntos
Bass , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno , Plásticos , Bass/genética , Peroxidases , Poluentes Químicos da Água/toxicidadeRESUMO
The lack of knowledge about the sensitivity of the endangered freshwater pearl mussel (FWPM) Margaritifera margaritifera to environmental pollution and the rapid decline of its populations in Europe, have led to the need of developing non-destructive experimental protocols in order to assess the impact of such pollution. This species has a complex life cycle and the early life stages are considered the most sensitive. This study deals with the development of a methodology for the assessment of juvenile mussels' locomotor behavior using an automated video tracking system. Different parameters were determined such as the duration of the video recording and light exposure as a stimulus during the experiment. Locomotion behavior pattern of juveniles was assessed in control condition and also following exposure to sodium chloride as a positive control in order to validate the experimental protocol developed in this study. Results showed that juveniles locomotion behavior was stimulated under light exposure. Moreover, exposure to sublethal concentrations of sodium chloride (0.8 and 1.2 g/L) for 24 h was found to decrease juveniles' locomotion by almost three-times, thus validating our experimental methodology. This study allowed to provide a new tool for the assessment of stress condition impacts on the juveniles of the endangered FWPM, highlighting the interest of such non-destructive biomarker of health for protected species. Consequently, this will help in the improvement of our knowledge on M. margaritifera sensitivity to environmental pollution.
Assuntos
Bivalves , Cloreto de Sódio , Animais , Água Doce , Europa (Continente) , LocomoçãoRESUMO
Carbaryl and fenitrothion are two insecticides sharing a common mode of action, the inhibition of the acetylcholinesterase (AChE) activity. Their use is now regulated or banned in different countries, and the environmental levels of both compounds in aquatic ecosystems have decreased to the range of pg/L to ng/L. As these concentrations are below the non-observed-adverse-effect-concentrations (NOAEC) for AChE inhibition reported for both compounds in aquatic organisms, there is a general agreement that the current levels of these two chemicals are safe for aquatic organisms. In this study we have exposed zebrafish, Japanese medaka and Daphnia magna to concentrations of carbaryl and fenitrothion under their NOAECs for 24-h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR) and its habituation have been evaluated. Both pesticides increased the HR in the three selected model organisms, although the intensity of this effect was chemical-, concentration- and organism-dependent. The exposure to both pesticides also led to a decrease in BLA and an increase in VMR in all three species, although this effect was only significant in zebrafish larvae. For SR and its habituation, the response profile was more species- and concentration-specific. The results presented in this manuscript demonstrate that concentrations of carbaryl and fenitrothion well below their respective NOAECs induce tachycardia and the impairment of ecologically relevant behaviors in phylogenetically distinct aquatic model organisms, both vertebrates and invertebrates, emphasizing the need to include this range of concentrations in the environmental risk assessment.
Assuntos
Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Carbaril/toxicidade , Fenitrotion/toxicidade , Peixe-Zebra , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase , Frequência Cardíaca , Organismos Aquáticos , Ecossistema , Inseticidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
Microplastics (MPs), widely present in aquatic ecosystems, can be ingested by numerous organisms, but their toxicity remains poorly understood. Toxicity of environmental MPs from 2 beaches located on the Guadeloupe archipelago, Marie Galante (MG) and Petit-Bourg (PB) located near the North Atlantic gyre, was evaluated. A first experiment consisted in exposing early life stages of zebrafish (Danio rerio) to MPs at 1 or 10 mg/L. The exposure of early life stages to particles in water induced no toxic effects except a decrease in larval swimming activity for both MPs exposures (MG or PB). Then, a second experiment was performed as a chronic feeding exposure over 4 months, using a freshwater fish species, zebrafish, and a marine fish species, marine medaka (Oryzias melastigma). Fish were fed with food supplemented with environmentally relevant concentrations (1% wet weight of MPs in food) of environmental MPs from both sites. Chronic feeding exposure led to growth alterations in both species exposed to either MG or PB MPs but were more pronounced in marine medaka. Ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) activities were only altered for marine medaka. Reproductive outputs were modified following PB exposure with a 70 and 42% decrease for zebrafish and marine medaka, respectively. Offspring of both species (F1 generation) were reared to evaluate toxicity following parental exposure on unexposed larvae. For zebrafish offspring, it revealed premature mortality after parental MG exposure and parental PB exposure produced behavioural disruptions with hyperactivity of F1 unexposed larvae. This was not observed in marine medaka offspring. This study highlights the ecotoxicological consequences of short and long-term exposures to environmental microplastics relevant to coastal marine areas, which represent essential habitats for a wide range of aquatic organisms.
Assuntos
Oryzias , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Ecossistema , Larva , Microplásticos , Plásticos/toxicidade , Reprodução , Natação , Poluentes Químicos da Água/análise , Peixe-ZebraRESUMO
Behavioral parameters are increasingly considered sensitive and early bioindicators of toxicity in aquatic organisms. A video-tracking tool was specifically developed to monitor the swimming behaviour of D-larvae of the Mediterranean mussel, Mytilus galloprovincialis, in controlled laboratory conditions. Both maximum and average swimming speeds and trajectories were recorded. We then investigated the impact of copper and silver with or without a moderate rise of temperature on swimming behavior and acetylcholinesterase (AChE) activity of mussel D-larvae and the possible mechanistic link between both biological responses. Our results showed that copper and/or silver exposure, as well as temperature increase, disrupts the swimming behavior of mussel larvae which could compromise their dispersal and survival. In addition, the combined effect of temperature and metals significantly (p < 0.05) increased AChE activity in mussel larvae. Pearson's correlation analysis was performed and results showed that the AChE activity is positively correlated with maximum speeds (r = 0.71, p < 0.01). This study demonstrates the value of behavioral analyzes of aquatic invertebrates as a sensitive and integrate marker of the effects of stressors.
Assuntos
Mytilus , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Cobre/toxicidade , Resposta ao Choque Térmico , Larva , Mytilus/fisiologia , Prata , Natação , Poluentes Químicos da Água/toxicidadeRESUMO
Vertical dynamics of microplastics (MPs) in the water column are complex and not fully understood due to the diversity of environmental MPs and the impact of weathering and biofouling on their dynamical properties. In this study, we investigate the effects of the particle properties and biofilm on the vertical (settling or rising) velocity of microplastic sheets and fibers under laboratory conditions. The experiments focus on three types of MPs (polyester PES fibers, polyethylene terephthalate PET sheets, and polypropylene PP sheets) of nine sizes and two degrees of biological colonization. Even though pristine PES fibers and PET sheets had a similar density, the sinking velocity of fibers was much smaller and independent of their length. The settling or rising velocity of sheets increased with the particle size up to a threshold and then decreased in the wake of horizontal oscillations in large particles. Biofilms had unexpected effects on vertical velocities. Irregular biofilm distributions can trigger motion instabilities that decrease settling velocities of sheets despite the increase in density. Biofilms can also modify the orientation of fibers, which may increase their settling velocity. Finally, we selected the most performant theoretical formulation for each type of particle and proposed modifications to consider the effect of biofilm distribution.
Assuntos
Incrustação Biológica , Poluentes Químicos da Água , Biofilmes , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análiseRESUMO
The main objective of this study was to improve our knowledge on the responses of fish populations to multistress (diffuse pollution and warming waters) in estuaries. Adult flounders were caught in two estuaries in the Eastern English Channel: the heavily polluted Seine estuary vs the moderately contaminated Canche estuary. Fish samplings were conducted in January just before the reproduction period, and in July when gonads were at rest. The overall rise in coastal winter water temperatures detected over the Channel impairs the flounder's phenology of reproduction in the two estuaries, inducing a delay of maturation process and probably also spawning. The higher liver histopathology index in Seine vs Canche could be the consequence of the fish exposition to a complex cocktail of contaminants in a strongly industrialized estuary. Higher levels of neurotoxicity, gill lipid peroxidation, and liver EROD activity were observed in Seine vs Canche. Furthermore, a possible impairment in mitochondrial metabolism was suggested in the Seine flounder population. We confirmed in this study the potential role of two membrane lipids (sphingomyelin and phosphatidylserine) in the resistance towards oxidative stress in Seine and Canche. Finally, we suggest that the Seine flounder population (and possibly the connected Eastern English Channel flounder populations over the French Coast) could be seriously impacted in the future by multistress: higher winter temperatures and chemical contamination.