RESUMO
Subchondral bone cysts in horses represent one of the main causes of lameness that can occur in different anatomical locations. The study describes the treatment in regenerative therapy of the intracystic implantation of adipose tissue mesenchymal stromal cells (AMSCs) included in platelet-rich plasma (PRP). The ability of AMSCs to differentiate in osteogenic cells was tested in vitro and in vivo. Given the aim to investigate the application of AMSCs in bone defects and orthopedic pathologies in horses, a four-year-old male thoroughbred racing horse that had never raced before was treated for lameness of the left hind leg caused by a cyst of the medial femoral condyle. The horse underwent a new surgery performed with an arthroscopic approach in which the cystic cavity was filled with AMSCs contained in the PRP. Radiographs were taken 3, 5, and 10 months after the surgery to assess the development of newly regenerated bone tissue in the gap left by the cyst. Twelve months after the operation and after six months of regular daily training, the horse did not show any symptoms of lameness and started a racing career. According to the study, the use of AMSCs and PRP suggests promising benefits for treating subchondral bone cysts.
RESUMO
Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.
RESUMO
Starting from October 2021, several outbreaks of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 were reported in wild and domestic birds in Italy. Following the detection of an HPAIV in a free-ranging poultry farm in Ostia, province of Rome, despite the lack of clinical signs, additional virological and serological analyses were conducted on samples collected from free-ranging pigs, reared in the same holding, due to their direct contact with the infected poultry. While the swine nasal swabs were all RT-PCR negative for the influenza type A matrix (M) gene, the majority (%) of the tested pigs resulted serologically positive for the hemagglutination inhibition test and microneutralization assay, using an H5N1 strain considered to be homologous to the virus detected in the farm. These results provide further evidence of the worrisome replicative fitness that HPAI H5Nx viruses of the 2.3.4.4b clade have in mammalian species. Moreover, our report calls for additional active surveillance, to promptly intercept occasional spillover transmissions to domestic mammals in close contact with HPAI affected birds. Strengthened biosecurity measures and efficient separation should be prioritized in mixed-species farms in areas at risk of HPAI introduction.