Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(30): 9037-9044, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36607033

RESUMO

Adjustable spatial coherence systems allow the possibility to make different intensity distributions using one source. Most common adjustable sources are based on the Collet-Wolf system. However, it is also possible to adjust the spatial coherence of the illumination field from white light sources by spatially filtering the source mutual intensity spectrum. We implement the Collet-Wolf source and the LED-based system to experimentally contrast a variety of partially coherent optical vortices that can be generated with spatial light modulation. We experimentally study the effects of changing the transverse coherence in partially coherent optical vortices, using a proposed metric of vortex contrast depth that quantifies the change of the vortex hollowness. To expand the analysis, we use a Michelson interferometer to reconstruct the spiral wavefronts using phase shifting. We found that the LED system at lower spatially correlated light produces truncated triangular distributions (a 50 µm pinhole is used), and with higher correlated light, it produces partially coherent optical vortices (a 10 µm pinhole is used). The Collet-Wolf system generates partially coherent optical vortices up to 0.5 mm of focal shift in the diffuser. Our results provide an experimental understanding and instrumental methodology capable of steering the optical transverse coherence, producing adjustable partially coherent optical vortices that can be obtained using incoherent and coherent sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA